Objective: (1) To assess cognitive function and cerebral magnetic resonance imaging (MRI) involvement in relapsing-remitting multiple sclerosis; (2) to monitor disease evolution, cognitive dysfunction, and cerebral lesion burden over time (mean 8.5 year follow up period); (3) to study the relation between clinical, neuropsychological, and MRI data. On follow up assessment, visual and auditory oddball event related potentials (ERPs) were recorded as psychophysiological evaluation of cognitive status. Correlations between neuropsychological, MRI, and ERP data were also analysed. Methods: Neuropsychological study assessed verbal and non-verbal IQ, deterioration index (DI) from WAIS subtests, conceptual reasoning, attention, verbal and visuospatial short-term and long term memory. MRI assessment detected presence of demyelinating lesions by using a semiquantitative method as well as cortical and subcortical atrophy over time.Results: Attention, short-term and long term visuospatial memory were mildly impaired at baseline and remained unaltered longitudinally. At retesting a significant worsening of verbal long term memory (p=0.023), DI presence (p=0.041) and the increase of supratentorial and subtentorial MRI lesions load (p=0.001) emerged. Expanded disability status scale score correlated significantly with total lesion burden at both evaluations (p=0.043 and p=0.024 respectively). Temporal, occipital, and frontal horn lesions as well as cortical atrophy correlated significantly with attention and memory tests at baseline. Follow up assessment revealed significant correlation between cortical atrophy and attention as well as visuospatial short-term memory; spatial long term memory correlated significantly with lesions in body of lateral ventricle and frontal lobe. ERP study showed P300 latency abnormalities in 75% of patients, involving specifically more visual P300 (58.4 % of cases) than auditory wave (41.6 %). Visual P300 latency and amplitude correlated significantly with DI and auditory P300 latency with frontal horn and brain stem lesions. Conclusions: These findings revealed mild cognitive impairment in MS patients particularly consistent with slowing information processing over time. Increased MRI lesions do not correlate with the clinical course of the disease and cognitive deficit evolution. Thus, cognitive dysfunction could be related to disease peculiarity and not to the time course. Correlations between P300, neuropsychological, and MRI findings provide further information about ERP application to examine cognitive impairment in MS and probably to investigate their neural origin. C ognitive dysfunction in multiple sclerosis (MS) occurs in 30%-70% of cases 1 2 especially referred to attention, recent memory, information processing speed, executive functions, verbal intellectual ability, and visuospatial perception.3-5 Conflicting literature data report that cognitive impairment could be considered an early feature of the disease or a consequence of its duration, course, and severity. [6][7][8] It is well...
Down-regulation of the liver-specific MAT1A gene, encoding S-adenosylmethionine (SAM) synthesizing isozymes MATI/III, and up-regulation of widely expressed MAT2A, encoding MATII isozyme, known as MAT1A:MAT2A switch, occurs in hepatocellular carcinoma (HCC). Here we found Mat1A:Mat2A switch and low SAM levels, associated with CpG hypermethylation and histone H4 deacetylation of Mat1A promoter, and prevalent CpG hypomethylation and histone H4 acetylation in Mat2A promoter of fast-growing HCC of F344 rats, genetically susceptible to hepatocarcinogenesis. In HCC of genetically resistant BN rats, very low changes in the Mat1A:Mat2A ratio, CpG methylation, and histone H4 acetylation occurred. The highest MAT1A promoter hypermethylation and MAT2A promoter hypomethylation occurred in human HCC with poorer prognosis. Furthermore, levels of AUF1 protein, which destabilizes MAT1A messenger RNA (mRNA), Mat1A-AUF1 ribonucleoprotein, HuR protein, which stabilizes MAT2A mRNA, and Mat2A-HuR ribonucleoprotein sharply increased in F344 and human HCC, and underwent low/no increase in BN HCC. In human HCC, Mat1A:MAT2A expression and MATI/ III:MATII activity ratios correlated negatively with cell proliferation and genomic instability, and positively with apoptosis and DNA methylation. Noticeably, the MATI/III:MATII ratio strongly predicted patient survival length. Forced MAT1A overexpression in HepG2 and HuH7 cells led to a rise in the SAM level, decreased cell proliferation, increased apoptosis, down-regulation of Cyclin D1, E2F1, IKK, NF-jB, and antiapoptotic BCL2 and XIAP genes, and up-regulation of BAX and BAK proapoptotic genes. In conclusion, we found for the first time a post-transcriptional regulation of MAT1A and MAT2A by AUF1 and HuR in HCC. Low MATI/III:MATII ratio is a prognostic marker that contributes to determine a phenotype susceptible to HCC and patients' survival. Conclusion: Interference with cell cycle progression and I-kappa B kinase (IKK)/nuclear factor kappa B (NF-jB) signaling contributes to the antiproliferative and proapoptotic effect of high SAM levels in HCC. (HEPATOLOGY 2012;56:165-175)
Repeated epidemiological assessments of MS in Sardinia over decades have shown that the island is at high risk for MS. The present work highlights that MS incidence in Sardinia has been increasing over time. Although a substantial and widely spread improvement in MS case ascertainment can be postulated as the reason for such observations, a comparison between our data and those recently reported from a more industrialized province in Northern Italy seems to prove an at least partially real increase in MS risk among Sardinians and favours the hypothesis of a MS "Sardinian focus" as related to its latitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.