The vast majority of cancer next-generation sequencing data consist of bulk samples composed of mixtures of cancer and normal cells. To study tumor evolution, subclonal reconstruction approaches based on machine learning are used to separate subpopulation of cancer cells and reconstruct their ancestral relationships. However, current approaches are entirely data-driven and agnostic to evolutionary theory. We demonstrate that systematic errors occur in subclonal reconstruction if tumor evolution is not accounted for, and that those errors increase when multiple samples are taken from the same tumor. To address this issue, we present a novel approach for model-based subclonal reconstruction that combines data-driven machine learning with evolutionary theory. Using public, synthetic and newly generated data, we show the method is more robust and accurate than current techniques in both single-sample and multi-region sequencing data. With careful data curation and interpretation, we show how the method allows minimizing the confounding factors that affect non-evolutionary methods, leading to a more accurate recovery of the evolutionary history of human tumors..
Recurrent successions of genomic changes, both within and between patients, reflect repeated evolutionary processes that are valuable for the anticipation of cancer progression. Multi-region sequencing allows the temporal order of some genomic changes in a tumor to be inferred, but the robust identification of repeated evolution across patients remains a challenge. We developed a machine-learning method based on transfer learning that allowed us to overcome the stochastic effects of cancer evolution and noise in data and identified hidden evolutionary patterns in cancer cohorts. When applied to multi-region sequencing datasets from lung, breast, renal, and colorectal cancer (768 samples from 178 patients), our method detected repeated evolutionary trajectories in subgroups of patients, which were reproduced in single-sample cohorts (n = 2,935). Our method provides a means of classifying patients on the basis of how their tumor evolved, with implications for the anticipation of disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.