Abstract:We are what we do, like, and say. Numerous research efforts have been pushed towards the automatic assessment of personality dimensions relying on a set of information gathered from social media platforms such as list of friends, interests of musics and movies, endorsements and likes an individual has ever performed. Turning this information into signals and giving them as inputs to supervised learning approaches has resulted in being particularly effective and accurate in computing personality traits and types. Despite the demonstrated accuracy of these approaches, the sheer amount of information needed to put in place such a methodology and access restrictions make them unfeasible to be used in a real usage scenario. In this paper, we propose a supervised learning approach to compute personality traits by only relying on what an individual tweets about publicly. The approach segments tweets in tokens, then it learns word vector representations as embeddings that are then used to feed a supervised learner classifier. We demonstrate the effectiveness of the approach by measuring the mean squared error of the learned model using an international benchmark of Facebook status updates. We also test the transfer learning predictive power of this model with an in-house built benchmark created by twenty four panelists who performed a state-of-the-art psychological survey and we observe a good conversion of the model while analyzing their Twitter posts towards the personality traits extracted from the survey.
In this paper we illustrate a system aimed at solving a longstanding and challenging problem: acquiring a classifier to automatically annotate bibliographic records by starting from a huge set of unbalanced and unlabelled data. We illustrate the main features of the dataset, the learning algorithm adopted, and how it was used to discriminate philosophical documents from documents of other disciplines. One strength of our approach lies in the novel combination of a standard learning approach with a semantic one: the results of the acquired classifier are improved by accessing a semantic network containing conceptual information. We illustrate the experimentation by describing the construction rationale of training and test set, we report and discuss the obtained results and conclude by drawing future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.