A number of recent advances in neural audio synthesis rely on upsampling layers, which can introduce undesired artifacts. In computer vision, upsampling artifacts have been studied and are known as checkerboard artifacts (due to their characteristic visual pattern). However, their effect has been overlooked so far in audio processing. Here, we address this gap by studying this problem from the audio signal processing perspective. We first show that the main sources of upsampling artifacts are: (i) the tonal and filtering artifacts introduced by problematic upsampling operators, and (ii) the spectral replicas that emerge while upsampling. We then compare different upsampling layers, showing that nearest neighbor upsamplers can be an alternative to the problematic (but state-of-the-art) transposed and subpixel convolutions which are prone to introduce tonal artifacts.
A number of recent advances in audio synthesis rely on neural upsamplers, which can introduce undesired artifacts. In computer vision, upsampling artifacts have been studied and are known as checkerboard artifacts (due to their characteristic visual pattern). However, their effect has been overlooked so far in audio processing. Here, we address this gap by studying this problem from the audio signal processing perspective. We first show that the main sources of upsampling artifacts are: (i) the tonal and filtering artifacts introduced by problematic upsampling operators, and (ii) the spectral replicas that emerge while upsampling. We then compare different neural upsamplers, showing that nearest neighbor interpolation upsamplers can be an alternative to the problematic (but state-of-the-art) transposed and subpixel convolutions which are prone to introduce tonal artifacts.
Upsampling artifacts are caused by problematic upsampling layers and due to spectral replicas that emerge while upsampling. Also, depending on the used upsampling layer, such artifacts can either be tonal artifacts (additive high-frequency noise) or filtering artifacts (substractive, attenuating some bands). In this work we investigate the practical implications of having upsampling artifacts in the resulting audio, by studying how different artifacts interact and assessing their impact on the models' performance. To that end, we benchmark a large set of upsampling layers for music source separation: different transposed and subpixel convolution setups, different interpolation upsamplers (including two novel layers based on stretch and sinc interpolation), and different wavelet-based upsamplers (including a novel learnable wavelet layer). Our results show that filtering artifacts, associated with interpolation upsamplers, are perceptually preferrable, even if they tend to achieve worse objective scores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.