Recent advancements in bidimensional nanoparticles production such as Graphene (G) and Graphene oxide (GO) have the potential to meet the need for highly functional personal protective equipment (PPE) against SARS-CoV-2 infection. The ability of G and GO to interact with microorganisms provides an opportunity to develop engineered textiles for use in PPE and limit the spread of COVID-19. PPE in current use in high-risk settings for COVID transmission provide only a physical barrier that decreases infection likelihood and does not inactivate the virus. Here, we show that virus pre-incubation with soluble GO inhibits SARS-CoV-2 infection of VERO cells. Furthermore, when G/GO functionalized polyurethane or cotton were in contact SARS-CoV-2, the infectivity of the fabric was nearly completely inhibited. The findings presented here constitute an important innovative nanomaterial-based strategy to significantly increase PPE efficacy in protection against the SARS-CoV-2 virus that may implement water filtration, air purification, and diagnostics methods.
Recent advancements in bidimensional nanoparticles such as Graphene nanoplatelets (G) and the derivative Graphene oxide (GO) have the potential to meet the need for highly functional personal protective equipment (PPE) that confers increased protection against SARS-CoV-2 infection and the spread COVID-19. The ability of G and GO to interact with and bind microorganisms as well as RNA and DNA provides an opportunity to develop engineered textiles for use in PPE. The face masks widely used in health care and other high-risk settings for COVID transmission provide only a physical barrier that decreases likelihood of infection and do not inactivate the virus. Here, we show pre-incubation of viral particles with free GO inhibits SARS-CoV-2 infection of VERO cells. Highly relevant to PPE materials, when either polyurethane or cotton material was loaded with G or GO and culture medium containing SARS-CoV-2 viral particles either filtered through or incubated with the functionalized materials, the infectivity of the medium was nearly completely inhibited. The findings presented here constitute an important nanomaterials-based strategy to significantly increase face mask and other PPE efficacy in protection against the SARS-CoV-2 virus and COVID-19 that may be applicable to additional anti-SARS-CoV-2 measures including water filtration, air purification, and diagnostics.
A Cu‐supported, graphene nanoplatelet (GNP) electrodes are reported a as high performance anode in lithium ion battery. The electrode precursor is an easy‐to‐handle aqueous ink cast on cupper foil and following dried in air. The scanning electron microscopy evidences homogeneous, micrometric flakes‐like morphology. Electrochemical tests in conventional electrolyte reveal a capacity of about 450 mAh g−1 over 300 cycles, delivered at a current rate as high as 740 mA g−1. The graphene‐based electrode is characterized using a N‐butyl‐N‐methyl‐pyrrolidiniumbis (trifluoromethanesulfonyl) imide, lithium‐bis(trifluoromethanesulfonyl)imide (Py1,4TFSI–LiTFSI) ionic liquid‐based solution added by ethylene carbonate (EC): dimethyl carbonate (DMC). The Li‐electrolyte interface is investigated by galvanostatic and potentiostatic techniques as well as by electrochemical impedance spectroscopy, in order to allow the use of the graphene‐nanoplatelets as anode in advanced lithium‐ion battery. Indeed, the electrode is coupled with a LiFePO4 cathode in a battery having a relevant safety content, due to the ionic liquid‐based electrolyte that is characterized by an ionic conductivity of the order of 10−2 S cm−1, a transference number of 0.38 and a high electrochemical stability. The lithium ion battery delivers a capacity of the order of 150 mAh g−1 with an efficiency approaching 100%, thus suggesting the suitability of GNPs anode for application in advanced configuration energy storage systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.