We investigate general probabilistic theories in which every mixed state has a purification, unique up to reversible channels on the purifying system. We show that the purification principle is equivalent to the existence of a reversible realization of every physical process, that is, to the fact that every physical process can be regarded as arising from a reversible interaction of the system with an environment, which is eventually discarded. From the purification principle we also construct an isomorphism between transformations and bipartite states that possesses all structural properties of the Choi-Jamio lkowski isomorphism in quantum theory. Such an isomorphism allows one to prove most of the basic features of quantum theory, like e.g. existence of pure bipartite states giving perfect correlations in independent experiments, no information without disturbance, no joint discrimination of all pure states, no cloning, teleportation, no programming, no bit commitment, complementarity between correctable channels and deletion channels, characterization of entanglement-breaking channels as measure-and-prepare channels, and others, without resorting to the mathematical framework of Hilbert spaces.
We derive Quantum Theory from purely informational principles. Five elementary axiomscausality, perfect distinguishability, ideal compression, local distinguishability, and pure conditioning-define a broad class of theories of information-processing that can be regarded as standard. One postulate-purification-singles out quantum theory within this class.
We present a framework to treat quantum networks and all possible transformations thereof, including as special cases all possible manipulations of quantum states, measurements, and channels, such as e.g. cloning, discrimination, estimation, and tomography. Our framework is based on the concepts of quantum comb-which describes all transformations achievable by a given quantum network-and link product-the operation of connecting two quantum networks. Quantum networks are treated both from a constructive point of view-based on connections of elementary circuitsand from an axiomatic one-based on a hierarchy of admissible quantum maps. In the axiomatic context a fundamental property is shown, which we call universality of quantum memory channels: any admissible transformation of quantum networks can be realized by a suitable sequence of memory channels. The open problem whether this property fails for some non-quantum theory, e.g. for nosignaling boxes, is posed.
We show that quantum theory allows for transformations of black boxes that cannot be realized by inserting the input black boxes within a circuit in a pre-defined causal order. The simplest example of such a transformation is the classical switch of black boxes, where two input black boxes are arranged in two different orders conditionally on the value of a classical bit. The quantum version of this transformation-the quantum switch-produces an output circuit where the order of the connections is controlled by a quantum bit, which becomes entangled with the circuit structure. Simulating these transformations in a circuit with fixed causal structure requires either postselection, or an extra query to the input black boxes.
We present a method for optimizing quantum circuits architecture, based on the notion of a quantum comb, which describes a circuit board where one can insert variable subcircuits. Unexplored quantum processing tasks, such as cloning and storing or retrieving of gates, can be optimized, along with setups for tomography and discrimination or estimation of quantum circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.