On the basis of previous ground-based and fly-by information, we knew that Titan's atmosphere was mainly nitrogen, with some methane, but its temperature and pressure profiles were poorly constrained because of uncertainties in the detailed composition. The extent of atmospheric electricity ('lightning') was also hitherto unknown. Here we report the temperature and density profiles, as determined by the Huygens Atmospheric Structure Instrument (HASI), from an altitude of 1,400 km down to the surface. In the upper part of the atmosphere, the temperature and density were both higher than expected. There is a lower ionospheric layer between 140 km and 40 km, with electrical conductivity peaking near 60 km. We may also have seen the signature of lightning. At the surface, the temperature was 93.65 +/- 0.25 K, and the pressure was 1,467 +/- 1 hPa.
The body image visible on the Turin Shroud (TS) has not yet been explained by science; this article proposes a hypothesis of image formation based on corona discharge (CD). Even if the environmental hypotheses relative to CD can be refined, many facts detected on the TS body image seem in agreement with the characteristics of an energy connected to CD and related to the human body enveloped in it. After a synthesis of the proposed imaging mechanisms and a presentation of the main characteristics of CD, the results, both at macroscopic and microscopic levels, of some experiments are presented and discussed also in light of some comments coming from scholars of Shroud Science Group. The results support the hypothesized mechanism of image formation and they show no appreciable chemical-physical differences from the image features of the TS. Therefore they confirm that the proposed CD mechanism could have been involved in the TS body image formation
Photographs of the back surface of the Turin Shroud were analysed to verify the existence of a double body image of a man. The body image is very faint and the background not uniform; i.e., the signal-to-noise ratio is lower than one. Therefore, image processing, developed ad hoc, was necessary to highlight body features. This was based on convolution with Gaussian filters, summation of images, and filtering in spatial frequency by direct and inverse bidimensional Fourier transformations. Body features were identified by template matching. The face and probably also the hands are visible on the back of the Turin Shroud, but not features related to the dorsal image.
The twelve results from the 1988 radio carbon dating of the Shroud of Turin show surprising heterogeneity. We try to explain this lack of homogeneity by regression on spatial coordinates. However, although the locations of the samples sent to the three laboratories involved are known, the locations of the 12 subsamples within these samples are not. We consider all 387,072 plausible spatial allocations and analyse the resulting distributions of statistics. Plots of robust regression residuals from the forward search indicate that some sets of allocations are implausible. We establish the existence of a trend in the results and suggest how better experimental design would have enabled stronger conclusions to have been drawn from this multi-centre experiment
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.