Photodynamic therapy involves administration of a tumor-localizing photosensitizing agent, which may require metabolic synthesis (i.e., a prodrug), followed by activation of the agent by light of a specific wavelength. This therapy results in a sequence of photochemical and photobiologic processes that cause irreversible photodamage to tumor tissues. Results from preclinical and clinical studies conducted worldwide over a 25-year period have established photodynamic therapy as a useful treatment approach for some cancers. Since 1993, regulatory approval for photodynamic therapy involving use of a partially purified, commercially available hematoporphyrin derivative compound (Photofrin) in patients with early and advanced stage cancer of the lung, digestive tract, and genitourinary tract has been obtained in Canada, The Netherlands, France, Germany, Japan, and the United States. We have attempted to conduct and present a comprehensive review of this rapidly expanding field. Mechanisms of subcellular and tumor localization of photosensitizing agents, as well as of molecular, cellular, and tumor responses associated with photodynamic therapy, are discussed. Technical issues regarding light dosimetry are also considered.
Background and Objectives: Photodynamic therapy (PDT) appears to be endowed with several favorable features for the treatment of infections originated by microbial pathogens, including a broad spectrum of action, the efficient inactivation of antibiotic-resistant strains, the low mutagenic potential, and the lack of selection of photoresistant microbial cells. Therefore, intensive studies are being pursued in order to define the scope and field of application of this approach. Results: Optimal cytocidal activity against a large variety of bacterial, fungal, and protozoan pathogens has been found to be typical of photosensitizers that are positively charged at physiological pH values (e.g., for the presence of quaternarized amino groups or the association with polylysine moieties) and are characterized by a moderate hydrophobicity (n-octanol/water partition coefficient around 10). These photosensitizers in a micromolar concentration can induce a > 4-5 log decrease in the microbial population after incubation times as short as 5-10 minutes and irradiation under mild experimental conditions, such as fluence-rates around 50 mW/cm 2 and irradiation times shorter than 15 minutes. Conclusions: PDT appears to represent an efficacious alternative modality for the treatment of localized microbial infections through the in situ application of the photosensitizer followed by irradiation of the photosensitizer-loaded infected area. Proposed clinical fields of interest of antimicrobial PDT include the treatment of chronic ulcers, infected burns, acne vulgaris, and a variety of oral infections.
Photodynamic therapy (PDT) appears to be endowed with several favourable features for the treatment of localized microbial infections, especially after the advent of cationic photosensitising agents (phenothiazines, meso-substituted porphyrins, polylysine-bound chlorins) which properly interact with the outer wall at the surface of several types of bacterial and yeast cells, increase their permeability, and allow significant amounts of photosensitizer to be accumulated at the level of the cytoplasmic membrane. These photosensitisers are characterized by a broad spectrum of activity, being effective toward both wild strain and antibiotic-resistant gram-positive and gram-negative bacteria and yeasts. In general, extensive eradication of pathogens can be achieved under mild irradiation conditions, such as short incubation times and low fluence-rates, which guarantees a high degree of selectivity in comparison with the main constituents of host tissues, such as keratinocytes and fibroblasts. Moreover, the photosensitised inactivation of microorganisms is typically a multi-target process; as a consequence, the selection of photoresistant microbial strains is very unlikely and has not been experimentally observed so far. Possible initial targets of antimicrobial PDT applications include periodontal diseases, impetigo, atopic dermatitis, acne vulgaris, infected wounds, and superinfected posriatic plaques.
Despite major advances in medicine in the last 100 years, microbiologically-based diseases continue to present enormous global health problems. New approaches that are effective, affordable and widely applicable and that are not susceptible to resistance are urgently needed. The photodynamic approach is known to meet at least some of these criteria and, with the creation and testing of new photosensitisers, may develop to meet all of them. The approach, involving the combination of light and a photosensitising drug, is currently being applied to the treatment of diseases caused by bacteria, yeasts, viruses and parasites, as well as to sterilisation of blood and other products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.