Introduction Myasthenia gravis (MG) is an autoimmune disease, for which the risk of exacerbation after vaccines is debated. The aim of this study is to review the available literature concerning safety and efficacy of vaccines in MG. In addition, we also conducted a retrospective research of MG exacerbations and new onset MG after anti-SARS-CoV-2 vaccination in a large cohort of patients. Methods A study of the available literature regarding vaccines and MG was carried out through research in the online database “Pubmed”. We also retrospectively collected data from 80 MG patients, who were followed at the Treviso Hospital and completed an anti-SARS-CoV-2 vaccination cycle. For each patient, we recorded MG exacerbations between first and second doses and within a window period of 1 day – 6 weeks after the second dose. Results We found 26 relevant articles about influenza, SARS-CoV-2 and other vaccines. No clear associations between most vaccines and MG exacerbations were found. Moreover, cases of new onset post-vaccine MG are mostly anecdotal, except for Japanese encephalitis virus vaccine. Concerning our cohort, 4/80 (5%) MG patients experienced an exacerbation within the post-vaccine window period. In addition, we report a case of new onset post-vaccine MG. Discussion Inactivated and subunit vaccines are safe and effective in MG. Although some of them, such as anti-SARS-CoV-2 vaccine, might uncommonly cause MG exacerbations, data from our review suggest that benefits still outweigh by far the potential risks, thus they should be recommended to these patients. Nevertheless, large prospective studies are needed for further investigations.
BackgroundGlioblastoma (GBM) is the most commonly occurring primary malignant brain tumor, and it carries a dismal prognosis. Focusing on the tumor microenvironment may provide new insights into pathogenesis, but no clinical tools are available to do this. We hypothesized that the infiltration of different leukocyte populations in the tumoral and peritumoral brain tissues may be measured by magnetic resonance imaging (MRI).MethodsPre-operative MRI was combined with immune phenotyping of intraoperative tumor tissue based on flow cytometry of myeloid cell populations that are associated with immune suppression, namely, microglia and bone marrow-derived macrophages (BMDM). These cell populations were measured from the central and marginal areas of the lesion identified intraoperatively with 5-aminolevulinic acid-guided surgery. MRI features (volume, mean and standard deviation of signal intensity, and fractality) were derived from all MR sequences (T1w, Gd+ T1w, T2w, FLAIR) and ADC MR maps and from different tumor areas (contrast- and non-contrast-enhancing tumor, necrosis, and edema). The principal components of MRI features were correlated with different myeloid cell populations by Pearson’s correlation.ResultsWe analyzed 126 samples from 62 GBM patients. The ratio between BMDM and microglia decreases significantly from the central core to the periphery. Several MRI-derived principal components were significantly correlated (p <0.05, r range: [−0.29, −0.41]) with the BMDM/microglia ratio collected in the central part of the tumor.ConclusionsWe report a significant correlation between structural MRI clinical imaging and the ratio of recruited vs. resident macrophages with different immunomodulatory activities. MRI features may represent a novel tool for investigating the microenvironment of GBM.
gender, sidedness, and must be taken into consideration as they influence the values of the obtained recordings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.