In the spirit of Germain the most general objective stored elastic energy for a second gradient material is deduced using a literature result of Fortuné & Vallée. Linear isotropic constitutive relations for stress and hyperstress in terms of strain and straingradient are then obtained proving that these materials are characterized by seven elastic moduli and generalizing previous studies by Toupin, Mindlin and Sokolowski. Using a suitable decomposition of the strain-gradient, it is found a necessary and sufficient condition, to be verified by the elastic moduli, assuring positive definiteness of the stored elastic energy. The problem of warping in linear torsion of a prismatic second gradient cylinder is formulated, thus obtaining a possible measurement procedure for one of the second gradient elastic moduli.
Second gradient theories have to be used to capture how local micro heterogeneities macroscopically affect the behavior of a continuum. In this paper a configurational space for a solid matrix filled by an unknown amount of fluid is introduced. The Euler-Lagrange equations valid for second gradient poromechanics, generalizing those due to Biot, are deduced by means of a Lagrangian variational formulation. Starting from a generalized Clausius-Duhem inequality, valid in the framework of second gradient theories, the existence of a macroscopic solid skeleton Lagrangian deformation energy, depending on the solid strain and the Lagrangian fluid mass density as well as on their Lagrangian gradients, is proven.
Second gradient theories have been developed in mechanics for treating different phenomena as capillarity in fluids, plasticity and friction in granular materials or shear band deformations. Here, there is an attempt of formulating a second gradient Biot like model for porous materials. In particular the interest is focused in describing the local dilatant behaviour of a porous material induced by pore opening elastic and capillary interaction phenomena among neighbouring pores and related micro-filtration phenomena by means of a continuum microstructured model. The main idea is to extend the classical macroscopic Biot model by including in the description second gradient effects. This is done by assuming that the surface contribution to the external work rate functional depends on the normal derivative of the velocity or equivalently assuming that the strain work rate functional depends on the porosity and strain gradients. According to classical thermodynamics suitable restrictions for stresses and second gradient internal actions (hyperstresses) are recovered, so as to determine a suitable extended form of the constitutive relation and Darcy's law. Finally a numerical application of the envisaged model to one-dimensional consolidation is developed; the obtained results generalize those by Terzaghi; in particular interesting phenomena occurring close to the consolidation external surface and the impermeable wall can be described, which were not accounted for previously. (C) 2007 Elsevier Ltd. All rights reserved
Fluid saturated porous media are modelled by the theory of mixtures and the placement maps of the solid and of the fluid are considered. The momentum balance equations are derived in the framework of a variational approach: We take an action functional and two families of variations and assume that the sum of the virtual work of the external forces and the variation of such an action along each variation are zero. Constitutive equations for the two Cauchy stress tensors and for the interaction force are derived taking into account a general state of pre-stress for the solid and for the fluid species. Governing equations are therefore formulated, however, for the sake of simplicity, only the case of pure initial pressure is further investigated. The propagation of bulk (transversal and longitudinal) waves and the influence of pre-stress are studied: In particular, stability analyses are carried out starting from dispersion relations and the role of pre-stress is investigated. Finally, a numerical example is established for a given state of pre-stress, deriving the phase velocities and the attenuation coefficients of transversal and longitudinal waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.