Abstract. The heterogeneous processing of organic aerosols by trace oxidants has many implications to atmospheric chemistry and climate regulation. This review covers a model heterogeneous reaction system (HRS): the oleic acidozone HRS and other reaction systems featuring fatty acids, and their derivatives. The analysis of the commonly observed aldehyde and organic acid products of ozonolysis (azelaic acid, nonanoic acid, 9-oxononanoic acid, nonanal) is described. The relative product yields are noted and explained by the observation of secondary chemical reactions. The secondary reaction products arising from reactive Criegee intermediates are mainly peroxidic, notably secondary ozonides and α-acyloxyalkyl hydroperoxide oligomers and polymers, and their formation is in accord with solution and liquidphase ozonolysis. These highly oxygenated products are of low volatility and hydrophilic which may enhance the ability of particles to act as cloud condensation nuclei (CCN). The kinetic description of this HRS is critically reviewed. Most kinetic studies suggest this oxidative processing is either a near surface reaction that is limited by the diffusion of ozone or a surface based reaction. Internally mixed particles and coatings represent the next stage in the progression towards more realistic proxies of tropospheric organic aerosols and a description of the products and the kinetics resulting from the ozonolysis of these proxies, which are based on fatty acids or their derivatives, is presented. Finally, the main atmospheric implications of oxidative processing of particulate containing fatty acids are presented. These implications include the extended lifetime of unsaturated species in the troposphere facilitated by the presence of solids, semi-solids or viscous phases, and an enhanced rate of ozone uptake by particulate unsaturates compared to corresponding gas-phase organics.Correspondence to: G. A. Petrucci (giuseppe.petrucci@uvm.edu) Ozonolysis of oleic acid enhances its CCN activity, which implies that oxidatively processed particulate may contribute to indirect forcing of radiation.
Aerosol phase state is critical for quantifying aerosol effects on climate and air quality. However, significant challenges remain in our ability to predict and quantify phase state during its evolution in the atmosphere. Herein, we demonstrate that aerosol phase (liquid, semisolid, solid) exhibits a diel cycle in a mixed forest environment, oscillating between a viscous, semisolid phase state at night and liquid phase state with phase separation during the day. The viscous nighttime particles existed despite higher relative humidity and were independently confirmed by bounce factor measurements and atomic force microscopy. High-resolution mass spectrometry shows the more viscous phase state at night is impacted by the formation of terpene-derived and higher molecular weight secondary organic aerosol (SOA) and smaller inorganic sulfate mass fractions. Larger daytime particulate sulfate mass fractions, as well as a predominance of lower molecular weight isoprene-derived SOA, lead to the liquid state of the daytime particles and phase separation after greater uptake of liquid water, despite the lower daytime relative humidity. The observed diel cycle of aerosol phase should provoke rethinking of the SOA atmospheric lifecycle, as it suggests diurnal variability in gas–particle partitioning and mixing time scales, which influence aerosol multiphase chemistry, lifetime, and climate impacts.
[1] The heterogeneous reaction of particle-phase 9-octadecenoic acid (oleic acid) and gasphase ozone in a flow reactor was studied by photoelectron resonance capture ionization (PERCI) mass spectrometry. This soft ionization technique facilitated one of the first simultaneous, direct observations of all four of the major products predicted for this reaction: nonanal, nonanoic acid, 9-oxononanoic acid, and azelaic acid. In addition, a series of higher molecular weight oxygenated compounds were observed directly for the first time. The proposed structures are all cyclic oxygenates and contain the oxygenoxygen moiety, including secondary ozonides and cyclic geminal diperoxides. Mechanisms for the formation of these products are proposed. The mechanisms are generally 1,3-dipolar cycloadditions that lead to five-and six-member oxygen-containing rings. The mechanisms are shown to involve short-lived Criegee intermediates reacting with aldehydes and other Criegee intermediates. Atmospheric implications of these higher molecular weight compounds are suggested and include enhancing the fatty acid medium's capacity to act as a source of radicals due to the prominence of the peroxide moiety. The low volatility coupled with the high polarity of these compounds may alter particle phase hygroscopicity that can enhance the cloud condensation nuclei properties of these particles.Citation: Zahardis, J., B. W. LaFranchi, and G. A. Petrucci (2005), Photoelectron resonance capture ionization-aerosol mass spectrometry of the ozonolysis products of oleic acid particles: Direct measure of higher molecular weight oxygenates, J. Geophys.
Abstract. Green leaf volatiles (GLVs) are a class of wound-induced volatile organic compounds emitted by several plant species. Turf grasses emit a complex profile of GLVs upon mowing, as evidenced by the "freshly cut grass" smell, some of which are readily oxidized in the atmosphere to contribute to secondary organic aerosol (SOA). The contribution of lawn-mowing-induced SOA production may be especially impactful at the urban–suburban interface, where urban hubs provide a source of anthropogenic oxidants and SOA while suburban neighborhoods have the potential to emit large quantities of reactive, mow-induced GLVs. This interface provides a unique opportunity to study aerosol formation in a multicomponent system and at a regionally relevant scale. Freshly cut grass was collected from a study site in Essex Junction, Vermont, and was placed inside a 775 L Teflon experimental chamber. Thermal desorption gas chromatography–mass spectrometry (TD-GC/MS) was used to characterize the emitted GLV profile. Ozone was introduced to the experimental chamber and TD-GC/MS was used to monitor the consumption of these GLVs and the subsequent evolution of gas-phase products, while a scanning mobility particle sizer was used to continuously measure aerosol size distributions and mass loadings as a result of grass clipping ozonolysis. Freshly cut grass was found to emit a complex mixture of GLVs, dominated by \\textit{cis}-3-hexenyl acetate (CHA) and \\textit{cis}-3-hexenol (HXL), which were released at an initial rate of 1.8 (± 0.5) μg and 0.07 (± 0.03) μg per square meter of lawn mowed with each mowing. Chamber studies using pure standards of CHA and HXL were found to have aerosol yields of 1.2 (± 1.1)% and 3.3 (± 3.1)%, respectively. Using these aerosol yields and the emission rate of CHA and HXL by grass, SOA evolution by ozonolysis of grass clippings was predicted. However, the measured SOA mass produced from the ozonolysis of grass clippings exceeded the predicted amount, by upwards of ~150%. The ozonolysis of a mixture of CHA and HXL representative of environmental mixing ratios also failed to accurately model the SOA mass produced by grass clippings. The disparity between measured SOA mass and the predicted SOA mass suggests that grass clippings contain other SOA precursors in addition to CHA and HXL. Aerial photographs and geospatial analysis were used to determine the area of turfgrass coverage in a suburban neighborhood, which was then used along with measured SOA production as a function of grass mowed to determine that lawn mowing has the potential to contribute 47 μg SOA per m−2 of lawn to the atmosphere per mowing event by ozonolysis, which cannot be modeled solely by the ozonolysis of CHA, HXL or a representative mixture of the two.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.