UAV path planning in 3D cluttered and uncertain environments centers on finding an optimal / sub-optimal collision-free path, considering in parallel geometric, physical and temporal constraints, fox example, obstacles, infrastructure, physical or artificial landmarks, etc. This paper introduces a novel node-based algorithm, called Energy Efficient A* (EEA*), which is based on the A* search algorithm, but overcomes some of its key limitations. The EEA* deals with 3D environments, it is robust converging fast to the solution, it is energy efficient and it is real-time implementable and executable. In addition to the EEA*, a local path planner is also derived to cope with unknown dynamic threats within the working environment. The EEA* and the local path planner are first implemented and evaluated via simulated experiments using a fixed-wing UAV operating in mountain-like 3D environments, and in the presence of unknown dynamic obstacles. This is followed by evaluating a set up where three UAVs are commanded to follow their respective paths in a safe way. The energy efficiency of EEA* is also tested and compared with the conventional A* algorithm.
This paper introduces NLCMap, a framework for the mapping space exploration targeting Non-Linear Convolutional Networks (NLCNs). NLCNs [1] are a novel neural network model that improves performances in certain computer vision applications by introducing a non-linearity in the weights computation. NLCNs are more challenging to efficiently map onto hardware accelerators if compared to traditional Convolutional Neural Networks (CNNs), due to data dependencies and additional computations. To this aim, we propose NL-CMap, a framework that, given an NLC layer and a generic hardware accelerator with a certain on-chip memory budget, finds the optimal mapping that minimizes the accesses to the off-chip memory, which are often the critical aspect in CNNs acceleration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.