Abstract. For utility maximization problems under proportional transaction costs, it has been observed that the original market with transaction costs can sometimes be replaced by a frictionless shadow market that yields the same optimal strategy and utility. However, the question of whether or not this indeed holds in generality has remained elusive so far. In this paper we present a counterexample which shows that shadow prices may fail to exist. On the other hand, we prove that short selling constraints are a sufficient condition to warrant their existence, even in very general multi-currency market models with possibly discontinuous bid-ask-spreads.
In this paper we deal with a utility maximization problem at finite horizon on a continuous-time market with conical (and time varying) constraints (particularly suited to model a currency market with proportional transaction costs). In particular, we extend the results in [CO10] to the situation where the agent is initially endowed with a random and possibly unbounded quantity of assets. We start by studying some basic properties of the value function (which is now defined on a space of random variables), then we dualize the problem following some convex analysis techniques which have proven very useful in this field of research. We finally prove the existence of a solution to the dual and (under an additional boundedness assumption on the endowment) to the primal problem. The last section of the paper is devoted to an application of our results to utility indifference pricing.
We consider the problem of exponential utility indifference valuation under the simplified framework where traded and nontraded assets are uncorrelated but where the claim to be priced possibly depends on both. Traded asset prices follow a multivariate Black and Scholes model, while nontraded asset prices evolve as generalized Ornstein-Uhlenbeck processes. We provide a BSDE characterization of the utility indifference price (UIP) for a large class of non-smooth, possibly unbounded, payoffs depending simultaneously on both classes of assets. Focusing then on Vanilla claims and using the Gaussian structure of the model allows us to employ some BSDE techniques (in particular, a Malliavin-type representation theorem due to [MZ02]) to prove the regularity of Z and to characterize the UIP for possibly discontinuous Vanilla payoffs as a viscosity solution of a suitable PDE with continuous space derivatives. The optimal hedging strategy is also identified essentially as the delta hedging strategy corresponding to the UIP. Since there are no closed-form formulas in general, we also obtain asymptotic expansions for prices and hedging strategies when the risk aversion parameter is small. Finally, our results are applied to pricing and hedging power derivatives in various structural models for energy markets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.