Tectonic erosion of the overriding plate by the downgoing slab is believed to occur at half the Earth's subduction zones. In situ investigation of the geological processes at active erosive margins is extremely difficult owing to the deep marine environment and the net loss of forearc crust to deeper levels in the subduction zone. Until now, a fossil erosive subduction channel-the shear zone marking the plate boundary-has not been recognized in the field, so that seismic observations have provided the only information on plate boundary processes at erosive margins. Here we show that a fossil erosive margin is preserved in the Northern Apennines of Italy. It formed during the Tertiary transition from oceanic subduction to continental collision, and was preserved by the late deactivation and fossilization of the plate boundary. The outcropping erosive subduction channel is approximately 500 m thick. It is representative of the first 5 km of depth, with its deeper portions reaching approximately 150 degrees C. The fossil zone records several surprises. Two décollements were simultaneously active at the top and base of the subduction channel. Both deeper basal erosion and near-surface frontal erosion occurred. At shallow depths extension was a key deformation component within this erosive convergent plate boundary, and slip occurred without an observable fluid pressure cycle. At depths greater than about 3 km a fluid cycle is clearly shown by the development of veins and the alternation of fast (co-seismic) and slow (inter-seismic) slip. In the deepest portions of the outcropping subduction channel, extension is finally overprinted by compressional structures. In modern subduction zones the onset of seismic activity is believed to occur at approximately 150 degrees C, but in the fossil channel the onset occurred at cooler palaeo-temperatures.
The Sestola-Vidiciatico Tectonic Unit (SVTU) in the Northern Apennines is an underthrust tectonic melange presently sandwiched between the Tuscan-Umbrian foredeep units and the overlying Ligurian/Subligurian thrust-nappe. The SVTU has been generated during the collision between the European and the Adria plates and now it separates the former oceanic accretionary wedge -Ligurian/Subligurian thrust nappe-from the underlying fold-and-thrust belt formed by Adria sedimentary units. The collision caused an eastward migrating foredeep basin and the overthrusting of the frontal part of the Ligurian/Subligurian thrust-nappe on the subducting Adria margin. Part of the inner lower-slope sediments of the migrating foredeep basin have been unconformably deposited on a frontal prism formed by material already accreted in the Ligurian/Subligurian prism gravitationally and tectonically reworked. The frontal prism and its sedimentary cover have been progressively dragged down along the plate boundary zone generating the SVTU. The lower-slope sediments have been incorporated in the melange as they were not completely lithified, and they show a long deformation history ranging from continuous and pervasive soft-sediment deformation to discontinuous brittle deformation concentrated along faults and mainly controlled by cycles of fluid pressure as testified by the presence of crack-and-seal texture and implosion breccia in the veins
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.