Mountain regions are globally important areas for biodiversity but are subject to multiple human-induced threats, including climate change, which has been more severe at higher elevations. We reviewed evidence for impacts of climate change on Holarctic mountain bird populations in terms of physiology, phenology, trophic interactions, demography and observed and projected distribution shifts, including effects of other factors that interact with climate change. We developed an objective classification of high-elevation, mountain specialist and generalist species, based on the proportion of their breeding range occurring in mountain regions. Our review found evidence of responses of mountain bird populations to climate (extreme weather events, temperature, rainfall and snow) and environmental (i.e. land use) change, but we know little about either the underlying mechanisms or the synergistic effects of climate and land use. Long-term studies assessing reproductive success or survival of mountain birds in relation to climate change were rare. Few studies have considered shifts in elevational distribution over time and a meta-analysis did not find a consistent direction in elevation change. A meta-analysis carried out on future projections of distribution shifts suggested that birds whose breeding distributions are largely restricted to mountains are likely to be more negatively impacted than other species. Adaptation responses to climate change rely mostly on managing and extending current protected areas for both
a b s t r a c tSpecies conservation largely depends on knowledge of habitat needs of target species. GIS-models are increasingly used to assess habitat preferences and distribution of target species, but their accuracy is constrained by availability of digital data layers. We developed a two-steps approach aiming at showing pros and cons of landscape (GIS)-and site-level habitat models, identifying key habitat factors for conservation of a threatened bird species, the red-backed shrike Lanius collurio. A spatially explicit GIS-model was generated using landscape variables, and a second model at site level was developed using fine-scale variables measured on the ground. The GIS-based model was then extrapolated to the entire region to obtain a map of distribution of suitable habitats. Positive associations between shrike occurrence and both hedgerow length and partial shrub cover were detected at both scales. Shrikes were also positively associated with grassland cover at landscape level and with partial cover of untilled herbaceous vegetation at the finer scale, and negatively affected by lucerne cover. The GIS-model led to an affordable map of predicted habitat suitability which should help conservationists to focus on different local priorities, but was unable to identify effects of untilled and lucerne cover. Site-level model gave fine details for habitat management, but its application elsewhere requires ground-measurements of factors. Combining the multiscale models could indicate more urgent actions at large scales (e.g. maintaining suitable habitats, or improving connectivity among isolated patches) and draw a detailed figure of the most suitable habitat for the species. Shrike occurrence was associated with a higher number of shrub and tree species: the indicator value of the species should ensure general benefits for biodiversity from dedicated management.
In many studies, flight initiation distance (FID, the distance at which a prey starts to flee at the approach of a walker) is positively related to starting distance (SD, the distance at which the walker begins to approach) and alert distance (AD, the distance at which the focal individual becomes alert to the threat). In spite of the fundamental differences between SD, a covariate that may not have any biological effect, and AD, a measure related to the behaviour of the animal, it is common to use SD as a proxy for AD when AD is hard to measure (e.g. in species that do not exhibit distinguishable alert postures). However, the relationship between SD and AD or FID may not have any biological reasons, but may instead simply result from a mathematical artefact because of the constraints SD ≥ AD ≥ FID. Under such constrains, the homoscedasticity assumption is violated, and thus, the classical null hypothesis of linear regression (slope = 0) is invalid. In this study, we first show that using SD as a proxy for AD can strongly affect the results on FID. Using data from FID tests on alpine marmots (Marmota marmota), a linear mixed model with AD as a covariate, suggested that the interaction between previous activity and AD had an effect on FID, while this effect was not detected when SD replaced AD as the covariate in the analysis. We then propose that the actual statistical test of the relationship between SD, AD and FID should be based on a null hypothesis that incorporates the constraint SD ≥ AD ≥ FID ≥ 0 and generate 95% CI of simulated slopes obtained from random values under this constraint. This null hypothesis can be rejected if the observed slope of the relationship between two of these variables is outside the 95% CI. We demonstrated that, for alpine marmots, the observed slope of the relationship between AD and SD was within the 95% CI of the simulated slopes. The absence of a statistically significant biological effect in the relationship between SD and AD raises important questions on the outcome of relationship between SD and FID. In Alpine marmot flight, decision should be studied separating the effect of SD on AD and the effect of AD on FID.
Land-use changes have strong impacts on biological communities. Among them, land abandonment is threatening a large number of conservation-concern species associated with semi-natural habitats shaped by 'traditional' farming. We focused on the red-backed shrike as a model for investigating the effect of land abandonment on a threatened bird species, and used historical data to model dynamic scenarios. We explored variations in habitat suitability from the 1950s to the present and predicted possible future variations. After investigating local habitat preferences of the species, we formulated a spatially explicit model of habitat suitability for shrikes according to current land-use types; then, we evaluated past habitat suitability, by applying the model to three known past scenarios, and simulated the habitat changes after land abandonment. By combining a habitat-association approach with past and future land use scenarios, we assessed and predicted the effects of habitat changes caused by abandonment. Shrike occurrence was favoured by the cover of four types of grassland and of shrubland with trees, and negatively affected by broadleaved woodlands. The current average habitat suitability is less than half of what it was in the 1950s. Future predictions in a complete abandonment scenario suggest that important decrease could be expected 10 or 20 years after abandonment, and that after 30 years the red-backed shrike would be completely extinct. Alternative scenarios involving partial abandonment suggested that subsidy policies may mitigate the effects of abandonment. Knowing land-use dynamics allowed the exploration of effects of land-use changes and corroborated the importance of low-intensity farming for conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.