Financial contagion from liquidity shocks has being recently ascribed as a prominent driver of systemic risk in interbank lending markets. Building on standard compartment models used in epidemics, in this work we develop an EDB (Exposed-Distressed-Bankrupted) model for the dynamics of liquidity shocks reverberation between banks, and validate it on electronic market for interbank deposits data. We show that the interbank network was highly susceptible to liquidity contagion at the beginning of the 2007/2008 global financial crisis, and that the subsequent micro-prudential and liquidity hoarding policies adopted by banks increased the network resilience to systemic risk-yet with the undesired side effect of drying out liquidity from the market. We finally show that the individual riskiness of a bank is better captured by its network centrality than by its participation to the market, along with the currently debated concept of "too interconnected to fail".
We find a nonlinear dependence between an indicator of the degree of multiscaling of log-price time series of a stock and the average correlation of the stock with respect to the other stocks traded in the same market. This result is a robust stylized fact holding for different financial markets. We investigate this result conditional on the stocks' capitalization and on the kurtosis of stocks' log-returns in order to search for possible confounding effects. We show that a linear dependence with the logarithm of the capitalization and the logarithm of kurtosis does not explain the observed stylized fact, which we interpret as being originated from a deeper relationship.
Research on scaling analysis in finance is vast and still flourishing. We introduce a novel statistical procedure based on the generalized Hurst exponent, the Relative Normalized and Standardized Generalized Hurst Exponent (RNSGHE), to robustly estimate and test the multiscaling property. Furthermore, we introduce a new tool to estimate the optimal aggregation time used in our methodology which we name Autocororrelation Segmented Regression. We numerically validate this procedure on simulated time series by using the Multifractal Random Walk and we then apply it to real financial data. We present results for times series with and without anomalies and we compute the bias that such anomalies introduce in the measurement of the scaling exponents. We also show how the use of proper scaling and multiscaling can ameliorate the estimation of risk measures such as Value at Risk (VaR). Finally, we propose a methodology based on Monte Carlo simulation, which we name Multiscaling Value at Risk (MSVaR), that takes into account the statistical properties of multiscaling time series. We mainly show that by using this statistical procedure in combination with the robustly estimated multiscaling exponents, the one year forecasted MSVaR mimics the VaR on the annual data for the majority of the stocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.