Proliferating cells require coordinated gene expression between the nucleus and mitochondria in order to divide, ensuring sufficient organelle number in daughter cells [1]. However, the machinery and mechanisms whereby proliferating cells monitor mitochondria and coordinate organelle biosynthesis remain poorly understood. Antibiotics inhibiting mitochondrial translation have emerged as therapeutics for human cancers because they block cell proliferation [2, 3]. These proliferative defects were attributable to modest decreases in mitochondrial respiration [3, 4], even though tumors are mainly glycolytic [5] and mitochondrial respiratory chain function appears to play a minor role in cell proliferation in vivo [6]. Here we challenge this interpretation by demonstrating that one class of antiproliferative antibiotic induces stalled mitochondrial ribosomes, which triggers a mitochondrial ribosome and RNA decay pathway. Rescue of the stalled mitochondrial ribosomes initiates a retrograde signaling response to block cell proliferation and occurs prior to any loss of mitochondrial respiration. The loss of respiratory chain function is simply a downstream effect of impaired mitochondrial translation and not the antiproliferative signal. This mitochondrial ribosome quality-control pathway is actively monitored in cells and constitutes an important organelle checkpoint for cell division.
We evaluated the role of natural mitochondrial DNA (mtDNA) variation on mtDNA copy number, biochemical features and life history traits in Drosophila cybrid strains. We demonstrate the effects of both coding region and non-coding A+T region variation on mtDNA copy number, and demonstrate that copy number correlates with mitochondrial biochemistry and metabolically important traits such as development time. For example, high mtDNA copy number correlates with longer development times. Our findings support the hypothesis that mtDNA copy number is modulated by mtDNA genome variation and suggest that it affects OXPHOS efficiency through changes in the organization of the respiratory membrane complexes to influence organismal phenotype.
Mutations in neurofibromin, a Ras GTPase-activating protein, lead to the tumor predisposition syndrome neurofibromatosis type 1. Here, we report that cells lacking neurofibromin exhibit enhanced glycolysis and decreased respiration in a Ras/ERK-dependent way. In the mitochondrial matrix of neurofibromin-deficient cells, a fraction of active ERK1/2 associates with succinate dehydrogenase (SDH) and TRAP1, a chaperone that promotes the accumulation of the oncometabolite succinate by inhibiting SDH. ERK1/2 enhances both formation of this multimeric complex and SDH inhibition. ERK1/2 kinase activity is favored by the interaction with TRAP1, and TRAP1 is, in turn, phosphorylated in an ERK1/2-dependent way. TRAP1 silencing or mutagenesis at the serine residues targeted by ERK1/2 abrogates tumorigenicity, a phenotype that is reverted by addition of a cell-permeable succinate analog. Our findings reveal that Ras/ERK signaling controls the metabolic changes orchestrated by TRAP1 that have a key role in tumor growth and are a promising target for anti-neoplastic strategies.
Highlights d Analysis of TRAP1 dynamics allows discovery of paralogselective allosteric inhibitors d Small molecules targeting TRAP1 revert TRAP1-dependent succinate dehydrogenase inhibition d Allosteric TRAP1 inhibitors abolish tumorigenic growth of neoplastic cells d Selective targeting of TRAP1 activity provides new antagonists of chaperones
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.