Abstract:We applied the Small Baseline Subset multi-temporal InSAR technique (SBAS) to two SAR datasets acquired from 2003 up to 2013 by Envisat (ESA, European Space Agency) and COSMO-SkyMed (ASI, Italian Space Agency) satellites to investigate spatial and temporal patterns of land subsidence in the Sibari Plain (Southern Italy). Subsidence processes (up to~20 mm/yr) were investigated comparing geological, hydrogeological, and land use information with interferometric results. We suppose a correlation between subsidence and thickness of the Plio-Quaternary succession suggesting an active role of the isostatic compensation. Furthermore, the active back thrusting in the Corigliano Gulf could trigger a flexural subsidence mechanism even if fault activity and earthquakes do not seem play a role in the present subsidence. In this context, the compaction of Holocene deposits contributes to ground deformation. Despite the rapid urbanization of the area in the last 50 years, we do not consider the intensive groundwater pumping and related water table drop as the main triggering cause of subsidence phenomena, in disagreement with some previous publications. Our interpretation for the deformation fields related to natural and anthropogenic factors would be a comprehensive and exhaustive justification to the complexity of subsidence processes in the Sibari Plain.
Sea state knowledge has a key role in evaluation of coastal erosion, the assessment of vulnerability and potential in coastal zone utilization, and development of numerical models to predict its evolution. X-band radar measurements were conducted to observe the spatial and temporal variation of the sea-state parameters along a 3 km long sandy-gravelly pocket beaches forming a littoral cell on Bagnara Calabra. We produced a sequence of 1000 images of the sea state extending offshore up to 1 mile. The survey has allowed monitoring the coastline, the directional wave spectra, the sea surface current fields, and the significant wave heights and detecting strong rip currents which cause scours around the open inlets and affect the stability of the submerged reef-type breakwaters. The possibility to validate the data acquired with other datasets (e.g., LaMMA Consortium) demonstrates the potential of the X-band radar technology as a monitoring tool to advance the understanding of the linkages between sea conditions, nearshore sediment dynamics, and coastal change. This work proves the possibility to obtain relevant information (e.g., wave number, period, and direction) for evaluation of local erosion phenomena and of morphological changes in the nearshore and surf zone.
Abstract:In this work, we map surficial ground deformations that occurred during the years 2004-2010 in the Crati Valley (Southern Italy). The valley is in one of the most seismically active regions of the Italian peninsula, and presents slope instability and widespread landslide phenomena. We measured ground deformations by applying the small baseline subset (SBAS) technique, a multi-temporal synthetic aperture radar interferometry (InSAR) methodology that is used to process datasets of synthetic aperture radar (SAR) images. Ground displacements are only partially visible with the InSAR technique. Visibility depends on the geometry of the acquisition layout, such as the radar acquisition angle view, and the land use. These two factors determine the backscattering of the reflected signal. Most of the ground deformation detected by InSAR can be attributed to the gravitational mass movements of the hillslopes (i.e., landslides), and the subsidence of the quaternary deposits filling the valley. The movements observed along the valley slopes were compared with the available landslide catalog. We also identified another cause of movement in this area, i.e., ground subsidence due to the compaction of the quaternary deposits filling the valley. This compaction can be ascribed to various sources, such as urban population growth and sprawl, industrial water withdrawal, and tectonic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.