Objective
Pathogenic variants in KCNT2 are rare causes of developmental epileptic encephalopathy (DEE). We herein describe the phenotypic and genetic features of patients with KCNT2‐related DEE, and the in vitro functional and pharmacological properties of KCNT2 channels carrying 14 novel or previously untested variants.
Methods
Twenty‐five patients harboring KCNT2 variants were investigated: 12 were identified through an international collaborative network, 13 were retrieved from the literature. Clinical data were collected and included in a standardized phenotyping sheet. Novel variants were detected using exome sequencing and classified using ACMG criteria. Functional and pharmacological studies were performed by whole‐cell electrophysiology in HEK‐293 and SH‐SY5Y cells.
Results
The phenotypic spectrum encompassed: (a) intellectual disability/developmental delay (21/22 individuals with available information), ranging from mild to severe/profound; (b) epilepsy (15/25); (c) neurological impairment, with altered muscle tone (14/22); (d) dysmorphisms (13/20). Nineteen pathogenic KCNT2 variants were found (9 new, 10 reported previously): 16 missense, 1 in‐frame deletion of a single amino acid, 1 nonsense, and 1 frameshift. Among tested variants, 8 showed gain‐of‐function (GoF), and 6 loss‐of‐function (LoF) features when expressed heterologously in vitro. Quinidine and fluoxetine blocked all GoF variants, whereas loxapine and riluzole activated some LoF variants while blocking others.
Interpretation
We expanded the phenotypic and genotypic spectrum of KCNT2‐related disorders, highlighting novel genotype–phenotype associations. Pathogenic KCNT2 variants cause GoF or LoF in vitro phenotypes, and each shows a unique pharmacological profile, suggesting the need for in vitro functional and pharmacological investigation to enable targeted therapies based on the molecular phenotype. ANN NEUROL 2023;94:332–349
Background: To investigate the genetic and environmental factors responsible for phenotype variability in a family carrying a novel CACNA1A missense mutation. Mutations in the CACNA1A gene were identified as responsible for at least three autosomal dominant disorders: FHM1 (Familial Hemiplegic Migraine), EA2 (Episodic Ataxia type 2), and SCA6 (Spinocerebellar Ataxia type 6). Overlapping clinical features within individuals of some families sharing the same CACNA1A mutation are not infrequent. Conversely, reports with distinct phenotypes within the same family associated with a common CACNA1A mutation are very rare. Case presentation: A clinical, molecular, neuroradiological, neuropsychological, and neurophysiological study was carried out in proband and his carrier mother. The new heterozygous missense variant c.4262G > A (p.Arg1421Gln) in the CACNA1A gene was detected in the two affected family members. The proband showed a complex clinical presentation characterized by developmental delay, poor motor coordination, hemiplegic migraine attacks, behavioral dysregulation, and EEG abnormalities. The mother showed typical episodic ataxia attacks during infancy with no other comorbidities and mild cerebellar signs at present neurological evaluation. Conclusions: The proband and his mother exhibit two distinct clinical phenotypes. It can be hypothesized that other unknown modifying genes and/or environmental factors may cooperate to generate the wide intrafamilial variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.