Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing3. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change3.
Monitoring of geomorphic changes affecting sea cliffs poses a difficult challenge from a logistical point of view. Nevertheless, this activity is fundamental for the evaluation of cliff recession rates and the assessment of risk conditions affecting coastal settlements. Innovative geomatics techniques provide a valid contribution to detect cliff topographic modifications induced by erosion or landslide processes. This study presents a photogrammetric approach based on structure from motion (SfM) aimed at monitoring the geomorphic evolution of a coastal landslide that displaced about 40 000 m 3 of material in southern Italy. The landslide was monitored for more than two years, comparing multitemporal 3D point clouds derived from SfM. The results of change detection analysis allowed quantifying the volumes of rocks and unconsolidated sediments mobilised by erosion processes after the main failure, and developing a sediment budget. The study highlighted the high erodibility of collapsed material, as well as the suitability of the adopted techniques for 3D change detection analyses.
In open-pit mines, monitoring of topographic and volumetric changes through time is found to be of great importance to support excavation stages and to plan rehabilitation strategies. In this work, we describe a geomatic approach to assess changes in surface mine extent and to quantify excavated volume in the Sa Pigada open-pit mine, Sardinia, Italy. We performed two drone-based photogrammetric surveys in 2013 and 2015, and by means of the Structure from Motion (SfM) technique, we obtained related 3D dense point clouds and digital orthophotos. Images were georeferenced thanks to a series of ground control points surveyed with geodetic GPS. Distances between the two clouds were estimated with the recent Multiscale Model to Model Cloud Comparison (M3C2) plug-in included in the CloudCompare open-source software. Starting from cloud-to-cloud distances, we calculated the excavated volume of mineral resources between the two surveys. Results of the M3C2 comparison supported the analysis of the two orthophotos, through which accurate limits of the 2013 and 2015 active mine areas, rehabilitated area and temporary dumps were identified and drawn in a digital map. Results obtained in this study suggest that the applied geomatic techniques are suitable for performing accurate change detection analysis in open-pit environments and represent a valid support for scientists and technicians allowing to monitor with high spatial and temporal resolutions. This approach can be also considered a valid tool to reduce environmental impact from mining
Abstract. The use of remote sensing techniques is now common practice in different working environments, including engineering geology. Moreover, in recent years the development of structure from motion (SfM) methods, together with rapid technological improvement, has allowed the widespread use of cost-effective remotely piloted aircraft systems (RPAS) for acquiring detailed and accurate geometrical information even in evolving environments, such as mining contexts. Indeed, the acquisition of remotely sensed data from hazardous areas provides accurate 3-D models and high-resolution orthophotos minimizing the risk for operators. The quality and quantity of the data obtainable from RPAS surveys can then be used for inspection of mining areas, audit of mining design, rock mass characterizations, stability analysis investigations and monitoring activities. Despite the widespread use of RPAS, its potential and limitations still have to be fully understood.In this paper a case study is shown where a RPAS was used for the engineering geological investigation of a closed marble mine area in Italy; direct ground-based techniques could not be applied for safety reasons. In view of the re-activation of mining operations, high-resolution images taken from different positions and heights were acquired and processed using SfM techniques to obtain an accurate and detailed 3-D model of the area. The geometrical and radiometrical information was subsequently used for a deterministic rock mass characterization, which led to the identification of two large marble blocks that pose a potential significant hazard issue for the future workforce. A preliminary stability analysis, with a focus on investigating the contribution of potential rock bridges, was then performed in order to demonstrate the potential use of RPAS information in engineering geological contexts for geohazard identification, awareness and reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.