Dynamic programming solutlons to a number of different recurrence equations for sequence comparison and for RNA secondary structure prediction are considered. These recurrences are defined over a number of points that is quadratic in the input size; however only a sparse set matters for the result. Efficient algorithms for these problems are given, when the weight functions used in the recurrences are taken to be linear. The time complexity of the algorithms depends almost linearly on the number of points that need to be considered; when the problems are sparse this results in a substantial speed-up over known algorithms.
We present the results of an extensive computational study on dynamic algorithms for all pairs shortest path problems. We describe our implementations of the recent dynamic algorithms of King and of Demetrescu and Italiano, and compare them to the dynamic algorithm of Ramalingam and Reps and to static algorithms on random, real-world and hard instances. Our experimental data suggest that some of the dynamic algorithms and their algorithmic techniques can be really of practical value in many situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.