The run-out of high speed granular masses or avalanches along mountain streams, till their arrest, is analytically modeled. The power balance of a sliding granular mass along two planar sliding surfaces is written by taking into account the mass volume, the slopes of the surfaces, the fluid pressure and the energy dissipation. Dissipation is due to collisions and displacements, both localized within a layer at the base of the mass. The run-out, the transition from the first to the second sliding surface and the final run-up of the mass are described by Ordinary Differential Equations (ODEs), solved in closed form (particular cases) or by means of numerical procedures (general case). The proposed solutions allow to predict the run-up length and the speed evolution of the sliding mass as a function of the involved geometrical, physical and mechanical parameters as well as of the simplified rheological laws assumed to express the energy dissipation effects. The corresponding solutions obtained according to the Mohr-Coulomb or Voellmy resistance laws onto the sliding surfaces are recovered as particular cases. The run-out length of a documented case is finally back analysed through the proposed model
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.