We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity.KCL-PH-TH/2019-65, CERN-TH-2019-126
We exhibit a theoretical calculation of the parameter β appearing in the generalized uncertainty principle (GUP) with only a quadratic term in the momentum. A specific numerical value is obtained by comparing the GUP-deformed Unruh temperature with the one predicted within the framework of Caianiello's theory of maximal acceleration. The physical meaning of this result is discussed in connection with constraints on β previously fixed via both theoretical and experimental approaches.PACS numbers: * gluciano@sa.infn.it † lpetruzziello@na.infn.it 1 Throughout the work, we set = c = 1, but we explicitly show the Newton constant G and the Boltzmann constant k B . The Planck length is defined as ℓp = √ G, the Planck energy as Ep ℓp = 1/2, and the Planck mass as mp = Ep, so that 2 ℓp mp = 1.
We study quantum corrections at the horizon scale of a black hole induced by a Generalized Uncertainty Principle (GUP) with a quadratic term in the momentum. The interplay between quantum mechanics and gravity manifests itself into a non-zero uncertainty in the location of the black hole radius, which turns out to be larger than the usual Schwarzschild radius. We interpret such an effect as a correction which makes the horizon disappear, as it happens in other models of quantum black holes already considered in literature. We name this kind of horizonless compact objects GUP stars. We also investigate some phenomenological aspects in the astrophysical context of binary systems and gravitational wave emission by discussing Love numbers, quasi-normal modes and echoes, and studying their behavior as functions of the GUP deformation parameter. Finally, we preliminarily explore the possibility to constrain such a parameter with future astrophysical experiments.
In Cosmology and in Fundamental Physics there is a crucial question like: where the elusive substance that we call Dark Matter is hidden in the Universe and what is it made of? that, even after 40 years from the Vera Rubin seminal discovery [1] does not have a proper answer. Actually, the more we have investigated, the more this issue has become strongly entangled with aspects that go beyond the established Quantum Physics, the Standard Model of Elementary particles and the General Relativity and related to processes like the Inflation, the accelerated expansion of the Universe and High Energy Phenomena around compact objects. Even Quantum Gravity and very exotic Dark Matter particle candidates may play a role in framing the Dark Matter mystery that seems to be accomplice of new unknown Physics. Observations and experiments have clearly indicated that the above phenomenon cannot be considered as already theoretically framed, as hoped for decades. The Special Topic to which this review belongs wants to penetrate this newly realized mystery from different angles, including that of a contamination of different fields of Physics apparently unrelated. We show with the works of this ST that this contamination is able to guide us into the required new Physics. This review wants to provide a good number of these “paths or contamination” beyond/among the three worlds above; in most of the cases, the results presented here open a direct link with the multi-scale dark matter phenomenon, enlightening some of its important aspects. Also in the remaining cases, possible interesting contacts emerges. Finally, a very complete and accurate bibliography is provided to help the reader in navigating all these issues.
We derive the Mandelstam–Tamm time–energy uncertainty relation for neutrino oscillations in a generic stationary curved spacetime. In particular, by resorting to Stodolsky covariant formula of the quantum mechanical phase, we estimate gravity effects on the neutrino energy uncertainty. Deviations from the standard Minkowski result are explicitly evaluated in Schwarzschild, Lense–Thirring and Rindler (uniformly accelerated) geometries. Finally, we discuss how spacetime could affect the characteristic neutrino oscillation length in connection with the recent view of flavor neutrinos as unstable particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.