This paper considers the problem of two adherents joined by a soft thin adhesive along their common surface. Using the asymptotic expansion method, the authors obtain a simplified model in which the adhesive is treated as a material surface and is replaced by returning springs. The authors show weak and strong convergence of the exact solution toward the solution of the limit problem. The singularities of the limit problem are analyzed, and it is shown that typically they are logarithmic. Furthermore, the authors investigate the phenomenon of boundary layer by studying the correctors, the extra terms, which must be added to the classical asymptotic expansion to verify the boundary conditions. The correctors show that, contrary to the adherents, in the adhesive there are power-type singularities, which are at the base of the failure of the assemblage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.