The brain’s structural connectivity plays a fundamental role in determining how neuron networks generate, process, and transfer information within and between brain regions. The underlying mechanisms are extremely difficult to study experimentally and, in many cases, large-scale model networks are of great help. However, the implementation of these models relies on experimental findings that are often sparse and limited. Their predicting power ultimately depends on how closely a model’s connectivity represents the real system. Here we argue that the data-driven probabilistic rules, widely used to build neuronal network models, may not be appropriate to represent the dynamics of the corresponding biological system. To solve this problem, we propose to use a new mathematical framework able to use sparse and limited experimental data to quantitatively reproduce the structural connectivity of biological brain networks at cellular level.
Background
The COVID-19 outbreak, an event of global concern, has provided scientists the opportunity to use mathematical modeling to run simulations and test theories about the pandemic.
Objective
The aim of this study was to propose a full-scale individual-based model of the COVID-19 outbreak in Lombardy, Italy, to test various scenarios pertaining to the pandemic and achieve novel performance metrics.
Methods
The model was designed to simulate all 10 million inhabitants of Lombardy person by person via a simple agent-based approach using a commercial computer. In order to obtain performance data, a collision detection model was developed to enable cluster nodes in small cells that can be processed fully in parallel. Within this collision detection model, an epidemic model based mostly on experimental findings about COVID-19 was developed.
Results
The model was used to explain the behavior of the COVID-19 outbreak in Lombardy. Different parameters were used to simulate various scenarios relating to social distancing and lockdown. According to the model, these simple actions were enough to control the virus. The model also explained the decline in cases in the spring and simulated a hypothetical vaccination scenario, confirming, for example, the herd immunity threshold computed in previous works.
Conclusions
The model made it possible to test the impact of people’s daily actions (eg, maintaining social distance) on the epidemic and to investigate interactions among agents within a social network. It also provided insight on the impact of a hypothetical vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.