Today, the introduction of wide band gap (WBG) semiconductors in power electronics has become mandatory to improve the energy efficiency of devices and modules and to reduce the overall electric power consumption in the world. Due to its excellent properties, gallium nitride (GaN) and related alloys (e.g., AlxGa1−xN) are promising semiconductors for the next generation of high-power and high-frequency devices. However, there are still several technological concerns hindering the complete exploitation of these materials. As an example, high electron mobility transistors (HEMTs) based on AlGaN/GaN heterostructures are inherently normally-on devices. However, normally-off operation is often desired in many power electronics applications. This review paper will give a brief overview on some scientific and technological aspects related to the current normally-off GaN HEMTs technology. A special focus will be put on the p-GaN gate and on the recessed gate hybrid metal insulator semiconductor high electron mobility transistor (MISHEMT), discussing the role of the metal on the p-GaN gate and of the insulator in the recessed MISHEMT region. Finally, the advantages and disadvantages in the processing and performances of the most common technological solutions for normally-off GaN transistors will be summarized.
One of the main challenges to exploit molybdenum disulfide (MoS) potentialities for the next-generation complementary metal oxide semiconductor (CMOS) technology is the realization of p-type or ambipolar field-effect transistors (FETs). Hole transport in MoS FETs is typically hampered by the high Schottky barrier height (SBH) for holes at source/drain contacts, due to the Fermi level pinning close to the conduction band. In this work, we show that the SBH of multilayer MoS surface can be tailored at nanoscale using soft O plasma treatments. The morphological, chemical, and electrical modifications of MoS surface under different plasma conditions were investigated by several microscopic and spectroscopic characterization techniques, including X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), conductive AFM (CAFM), aberration-corrected scanning transmission electron microscopy (STEM), and electron energy loss spectroscopy (EELS). Nanoscale current-voltage mapping by CAFM showed that the SBH maps can be conveniently tuned starting from a narrow SBH distribution (from 0.2 to 0.3 eV) in the case of pristine MoS to a broader distribution (from 0.2 to 0.8 eV) after 600 s O plasma treatment, which allows both electron and hole injection. This lateral inhomogeneity in the electrical properties was associated with variations of the incorporated oxygen concentration in the MoS multilayer surface, as shown by STEM/EELS analyses and confirmed by ab initio density functional theory (DFT) calculations. Back-gated multilayer MoS FETs, fabricated by self-aligned deposition of source/drain contacts in the O plasma functionalized areas, exhibit ambipolar current transport with on/off current ratio I/I ≈ 10 and field-effect mobilities of 11.5 and 7.2 cm V s for electrons and holes, respectively. The electrical behavior of these novel ambipolar devices is discussed in terms of the peculiar current injection mechanisms in the O plasma functionalized MoS surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.