The PTEN/PI3K signaling pathway regulates a vast array of fundamental cellular responses. We show that cardiomyocyte-specific inactivation of tumor suppressor PTEN results in hypertrophy, and unexpectedly, a dramatic decrease in cardiac contractility. Analysis of double-mutant mice revealed that the cardiac hypertrophy and the contractility defects could be genetically uncoupled. PI3Kalpha mediates the alteration in cell size while PI3Kgamma acts as a negative regulator of cardiac contractility. Mechanistically, PI3Kgamma inhibits cAMP production and hypercontractility can be reverted by blocking cAMP function. These data show that PTEN has an important in vivo role in cardiomyocyte hypertrophy and GPCR signaling and identify a function for the PTEN-PI3Kgamma pathway in the modulation of heart muscle contractility.
The G protein-coupled, receptor-activated phosphoinositide 3-kinase gamma (PI3Kgamma) mediates inflammatory responses and negatively controls cardiac contractility by reducing cAMP concentration. Here, we report that mice carrying a targeted mutation in the PI3Kgamma gene causing loss of kinase activity (PI3KgammaKD/KD) display reduced inflammatory reactions but no alterations in cardiac contractility. We show that, in PI3KgammaKD/KD hearts, cAMP levels are normal and that PI3Kgamma-deficient mice but not PI3KgammaKD/KD mice develop dramatic myocardial damage after chronic pressure overload induced by transverse aortic constriction (TAC). Finally, our data indicate that PI3Kgamma is an essential component of a complex controlling PDE3B phosphodiesterase-mediated cAMP destruction. Thus, cardiac PI3Kgamma participates in two distinct signaling pathways: a kinase-dependent activity that controls PKB/Akt as well as MAPK phosphorylation and contributes to TAC-induced cardiac remodeling, and a kinase-independent activity that relies on protein interactions to regulate PDE3B activity and negatively modulates cardiac contractility.
In this study, we reveal that leptin evokes an acute hypotensive effect in 6-hydroxydopamine sympathectomized rats (response to maximal leptin dose, mean blood pressure: from 92 +/- 4 to 78 +/- 2 mmHg, P < 0.01). This hemodynamic effect is related to a direct action of the hormone on vascular tone, since in aortic and mesenteric rings increasing doses of leptin evoke a dose-dependent vasorelaxation (aorta: from 3 +/- 1 to 36 +/- 3, n = 15; mesenteric: from 6 +/- 1 to 30 +/- 5, n = 10), which is impaired by endothelial denudation. In particular, leptin-evoked vasorelaxation is impaired by nitric oxide synthase inhibition in aorta (delta% of maximal response: from 36 +/- 3 to 3 +/- 1, P < 0.01) and by endothelium-derived hyperpolarizing factor (EDHF) inhibition in mesenteric arteries (delta% of maximal response: from 30 +/- 5 to 7 +/- 2, P < 0.01), suggesting that vasorelaxation evoked by leptin is heterogeneous and related to the vascular bed. Finally, the inhibition of nitric oxide synthase by NG-nitro-L-arginine-methyl ester does not modify blood pressure response to leptin, suggesting a predominant role of the EDHF mechanism in the hypotensive effect of leptin.
TGF-beta proteins are main regulators of blood vessel development and maintenance. Here, we report an unprecedented link between TGF-beta signaling and arterial hypertension based on the analysis of mice mutant for Emilin1, a cysteine-rich secreted glycoprotein expressed in the vascular tree. Emilin1 knockout animals display increased blood pressure, increased peripheral vascular resistance, and reduced vessel size. Mechanistically, we found that Emilin1 inhibits TGF-beta signaling by binding specifically to the proTGF-beta precursor and preventing its maturation by furin convertases in the extracellular space. In support of these findings, genetic inactivation of Emilin1 causes increased TGF-beta signaling in the vascular wall. Strikingly, high blood pressure observed in Emilin1 mutants is rescued to normal levels upon inactivation of a single TGF-beta1 allele. This study highlights the importance of modulation of TGF-beta availability in the pathogenesis of hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.