Complex trait genome-wide association studies (GWAS) provide an efficient strategy for evaluating large numbers of common variants in large numbers of individuals and for identifying trait-associated variants. Nevertheless, GWAS often leave much of the trait heritability unexplained. We hypothesized that some of this unexplained heritability might be due to common and rare variants that reside in GWAS identified loci but lack appropriate proxies in modern genotyping arrays. To assess this hypothesis, we re-examined 7 genes (APOE, APOC1, APOC2, SORT1, LDLR, APOB, and PCSK9) in 5 loci associated with low-density lipoprotein cholesterol (LDL-C) in multiple GWAS. For each gene, we first catalogued genetic variation by re-sequencing 256 Sardinian individuals with extreme LDL-C values. Next, we genotyped variants identified by us and by the 1000 Genomes Project (totaling 3,277 SNPs) in 5,524 volunteers. We found that in one locus (PCSK9) the GWAS signal could be explained by a previously described low-frequency variant and that in three loci (PCSK9, APOE, and LDLR) there were additional variants independently associated with LDL-C, including a novel and rare LDLR variant that seems specific to Sardinians. Overall, this more detailed assessment of SNP variation in these loci increased estimates of the heritability of LDL-C accounted for by these genes from 3.1% to 6.5%. All association signals and the heritability estimates were successfully confirmed in a sample of ∼10,000 Finnish and Norwegian individuals. Our results thus suggest that focusing on variants accessible via GWAS can lead to clear underestimates of the trait heritability explained by a set of loci. Further, our results suggest that, as prelude to large-scale sequencing efforts, targeted re-sequencing efforts paired with large-scale genotyping will increase estimates of complex trait heritability explained by known loci.
Androgenetic alopecia (AGA) is a common heritable polygenic disorder whose genetics is not fully understood, even though it seems to be X-linked. We carried out an epidemiological survey for AGA on 9,000 people from 8 isolated villages of a secluded region of Sardinia (Ogliastra), and identified a large cohort of affected individuals. We genotyped 200 cases and 200 controls (mean kinship 0.001) with the 500k chip array and conducted case-control association analysis on the X chromosome. We identified Xq11-q12 as strongly associated with AGA. In particular, we found that rs1352015 located 8 kb from the EDA2R gene showed the best result (P=7.77e(-7)). This region also contains the AR gene, hence we tested both genes in 492 cases and 492 controls. We found that the non-synonymous SNP rs1385699 on EDA2R gave the best result (P=3.9e(-19)) whereas rs6152 on the AR gene is less significant (P=4.17e(-12)). Further statistical analysis carried out by conditioning each gene to the presence of the other showed that the association with EDA2R is independent while the association with AR seems to be the result of linkage disequilibrium. These results give insight into the pathways involved in AGA etiology.
Uric acid nephrolithiasis (UAN) is a common disease with an established genetic component that presents a complex mode of inheritance. While studying an ancient founder population in Talana, a village in Sardinia, we recently identified a susceptibility locus of approximately 2.5 cM for UAN on 10q21-q22 in a relatively small sample that was carefully selected through genealogical information. To refine the critical region and to identify the susceptibility gene, we extended our analysis to severely affected subjects from the same village. We confirm the involvement of this region in UAN through identical-by-descent sharing and autozygosity mapping, and we refine the critical region to an interval of approximately 67 kb associated with UAN by linkage-disequilibrium mapping. After inspecting the genomic sequences available in public databases, we determined that a novel gene overlaps this interval. This gene is divided into 15 exons, spanning a region of approximately 300 kb and generating at least four different proteins (407, 333, 462, and 216 amino acids). Interestingly, the last isoform was completely included in the 67-kb associated interval. Computer-assisted analysis of this isoform revealed at least one membrane-spanning domain and several N- and O-glycosylation consensus sites at N-termini, suggesting that it could be an integral membrane protein. Mutational analysis shows that a coding nucleotide variant (Ala62Thr), causing a missense in exon 12, is in strong association with UAN (P=.0051). Moreover, Ala62Thr modifies predicted protein secondary structure, suggesting that it may have a role in UAN etiology. The present study underscores the value of our small, genealogically well-characterized, isolated population as a model for the identification of susceptibility genes underlying complex diseases. Indeed, using a relatively small sample of affected and unaffected subjects, we identified a candidate gene for multifactorial UAN.
The reactions of 1,3,8,10-tetrakis(4'-fluorophenyl)-4,5,6,7-tetrathiocino[1,2-b:3,4-b']diimidazolyl-2,9-dithione (4) and molecular diiodine afforded spoke adducts with stoichiometries 4·I2 and 4·3I2 , isolated in the compound 4·3I2·xCH2Cl2·(1-x)I2 (x=0.70), and characterized by single-crystal XRD and FT-Raman spectroscopy. The nature of the reaction products was investigated under the prism of theoretical calculations carried out at the DFT level. The structural data, FT-Raman spectroscopy, and quantum mechanical calculations agree in indicating that the introduction of fluorophenyl substituents results in a lowering of the Lewis basicity of this class of bis(thiocarbonyl) donors compared with alkyl-substituted tetrathiocino donors and fluorine allows for extended interactions that are responsible for solid-state crystal packing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.