Nowadays, only a few data are available about left heart unloading in V-A ECMO support. Despite the well-known controversy, IABP remains widely used in combination with V-A ECMO. Percutaneous approaches utilizing unloading devices is becoming an increasingly used option. However, further studies are required to establish the optimal LV unloading method.
Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is an increasingly adopted life-saving mechanical circulatory support for a number of potentially reversible or treatable cardiac diseases. It is also started as a bridge-to-transplantation/ventricular assist device in the case of unrecoverable cardiac or cardio-respiratory illness. In recent years, principally for non-post-cardiotomy shock, peripheral cannulation using the femoral vessels has been the approach of choice because it does not need the chest opening, can be quickly established, can be applied percutaneously, and is less likely to cause bleeding and infections than central cannulation. Peripheral ECMO, however, is characterized by a higher rate of vascular complications. The mechanisms of such adverse events are often multifactorial, including suboptimal arterial perfusion and hemodynamic instability due to the underlying disease, peripheral vascular disease, and placement of cannulas that nearly occlude the vessel. The effect of femoral artery damage and/or significant reduced limb perfusion can be devastating because limb ischemia can lead to compartment syndrome, requiring fasciotomy and, occasionally, even limb amputation, thereby negatively impacting hospital stay, long-term functional outcomes, and survival. Data on this topic are highly fragmentary, and there are no clear-cut recommendations. Accordingly, the strategies adopted to cope with this complication vary a great deal, ranging from preventive placement of antegrade distal perfusion cannulas to rescue interventions and vascular surgery after the complication has manifested.
This review aims to provide a comprehensive overview of limb ischemia during femoral cannulation for VA-ECMO in adults, focusing on incidence, tools for early diagnosis, risk factors, and preventive and treating strategies.
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has presently become a rapidly spreading and devastating global pandemic. Veno-venous extracorporeal membrane oxygenation (V-V ECMO) may serve as life-saving rescue therapy for refractory respiratory failure in the setting of acute respiratory compromise such as that induced by SARS-CoV-2. While still little is known on the true efficacy of ECMO in this setting, the natural resemblance of seasonal influenza's characteristics with respect to acute onset, initial symptoms, and some complications prompt to ECMO implantation in most severe, pulmonary decompensated patients. The present review summarizes the evidence on ECMO management of severe ARDS in light of recent COVID-19 pandemic, at the same time focusing on differences and similarities between SARS-CoV-2 and ECMO in terms of hematological and inflammatory interplay when these two settings merge.
OPCAB is associated with a significant reduction in the odds of cerebral stroke compared with conventional CABG. In addition, benefits of OPCAB in terms of death, MI, and cerebral stroke are significantly related to patient risk profile, suggesting that OPCAB should be strongly considered in high-risk patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.