Background Myopalladin (MYPN) is a component of the sarcomere that tethers nebulin in skeletal muscle and nebulette in cardiac muscle to alpha-actinin at the Z lines. Autosomal dominant MYPN mutations cause hypertrophic, dilated, or restrictive cardiomyopathy. Autosomal recessive MYPN mutations have been reported in only six families showing a mildly progressive nemaline or cap myopathy with cardiomyopathy in some patients. Case presentation A consanguineous family with congenital to adult-onset muscle weakness and hanging big toe was reported. Muscle biopsy showed minimal changes with internal nuclei, type 1 fiber predominance, and ultrastructural defects of Z line. Muscle CT imaging showed marked hypodensity of the sartorius bilaterally and MRI scattered abnormal high-intensity areas in the internal tongue muscle and in the posterior cervical muscles. Cardiac involvement was demonstrated by magnetic resonance imaging and late gadolinium enhancement. Whole exome sequencing analysis identified a homozygous loss of function single nucleotide deletion in the exon 11 of the MYPN gene in two siblings. Full-length MYPN protein was undetectable on immunoblotting, and on immunofluorescence, its localization at the Z line was missed. Conclusions This report extends the phenotypic spectrum of recessive MYPN-related myopathies showing: (1) the two patients had hanging big toe and the oldest one developed spine and hand contractures, none of these signs observed in the previously reported patients, (2) specific ultrastructural changes consisting in Z line fragmentation, but (3) no nemaline or caps on muscle pathology.
Objectives-In recent years, an increasing need to use imaging to assess normal and adaptive muscle function, in addition to its anatomy and structure, has emerged. We evaluated the myotendinous junction's elastosonographic behavior in light of the most recent literature on its physiologic behavior. The elastosonographic studies were compared with the results obtained from a standard measurement system to ensure a correlation with maximal muscle contraction.Methods-Nineteen male professional soccer players were assessed during functional tests. The participants performed 5 repetitions at 608/s to assess muscle strength and 3 repetitions at 308/s to assess the maximum force peak of thigh muscles. The participants were monitored by a strength-power measurement system and an ultrasound machine equipped with multifrequency (18-6-MHz) linear array transducers.Results-The 19 soccer players were aged between 19 and 34 years (mean age, 28 years). For the right rectus femoris, the results of the elastosonographic studies showed a mean elasticity value 6 SD of 30.75% 6 10.05% with the muscle relaxed and a value of 13.75% 6 8.44% during contraction (mean decrease, 17.00% 6 11.71%). Elasticity values were 36.48% 6 8.39% before contraction and 8.77% 6 6.55% during contraction of the left rectus femoris muscle (mean decrease, 27.71% 6 11.95%). For 308 eccentric contraction of the left leg, correlation with the standard measurement system showed Pearson r values of 20.53 and 20.51 when comparing force peak and mean work, respectively, with elasticity values.Conclusions-Our study shows that strain elastosonographic quantification of muscle elasticity seems to match the expected physiologic and biomechanical behavior of the myotendinous junction.
The in-vivo quantification of knee motion in physiological loading conditions is paramount for the understanding of the joint’s natural behavior and the comprehension of articular disorders. Dynamic MRI (DMRI) represents an emerging technology that makes it possible to investigate the functional interaction among all the joint tissues without risks for the patient. However, traditional MRI scanners normally offer a reduced space of motion, and complex apparatus are needed to load the articulation, due to the horizontal orientation of the scanning bed. In this study, we present an experimental and computational procedure that combines an open, weight-bearing MRI scanner with an original registration algorithm to reconstruct the three-dimensional kinematics of the knee from DMRI, thus allowing the investigation of knee deep-flexion under physiological loads in space. To improve the accuracy of the procedure, an MR-compatible rig has been developed to guide the knee flexion of the patient. We tested the procedure on three volunteers. The overall rotational and positional accuracy achieved are 1.8° ± 1.4 and 1.2 mm ± 0.8, respectively, and they are sufficient for the characterization of the joint behavior under load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.