Acne has a prevalence of over 90% among adolescents and persists into adulthood in approximately 12%–14% of cases with psychological and social implications. Possible outcomes of the inflammatory acne lesions are acne scars which, although they can be treated in a number of ways, may have a negative psychological impact on social life and relationships. The main types of acne scars are atrophic and hypertrophic scars. The pathogenesis of acne scarring is still not fully understood, but several hypotheses have been proposed. There are numerous treatments: chemical peels, dermabrasion/microdermabrasion, laser treatment, punch techniques, dermal grafting, needling and combined therapies for atrophic scars: silicone gels, intralesional steroid therapy, cryotherapy, and surgery for hypertrophic and keloidal lesions. This paper summarizes acne scar pathogenesis, classification and treatment options.
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease primarily affecting apocrine gland-rich areas of the body and presenting with painful nodules, abscesses, sinus tracts, and scarring. HS is a multifactorial disease in which genetic and environmental factors play a key role. The primary defect in HS pathophysiology involves follicular occlusion of the folliculopilosebaceous unit, followed by follicular rupture, and immune responses (perifollicular lympho-histiocytic inflammation), finally leading to the development of clinical HS lesions. HS has a destructive impact on the patient’s quality of life, being a very challenging disease. Available treatments are limited, mostly off-label and with high variability in the reported efficacy. Fortunately, a monoclonal antibody against tumor necrosis factor alpha has been recently approved for treatment of moderate to severe HS, offering patients a promising new option. This review focuses on the main features of HS, including epidemiology, clinical aspects, pathogenesis, severity classifications, comorbidities, and currently available treatments.
Summary
The complex interplay of genetic and epigenetic factors linking sun exposure to melanoma in the red hair phenotype hinges on the peculiar physical and chemical properties of pheomelanins and the underlying biosynthetic pathway, which is switched on by the effects of inactivating polymorphisms in the melanocortin 1 receptor gene. In addition to the long recognized UV‐dependent pathways of toxicity and cell damage, a UV‐independent pro‐oxidant state induced by pheomelanin within the genetically determined background of the red hair phenotype has recently been disclosed. This review provides a detailed discussion of the possible UV‐dependent and UV‐independent chemical mechanisms underlying pheomelanin‐mediated oxidative stress, with special reference to the oxygen‐dependent depletion of glutathione and other cell antioxidants. The new concept of pheomelanin as a ‘living’ polymer and biocatalyst that may grow by exposure to monomer building blocks and may trigger autooxidative processes is also discussed. As a corollary, treatment of inflammatory skin diseases in RHP patients is briefly commented. Finally, possible concerted strategies for melanoma prevention in the red hair phenotype are proposed.
Recent advances in the chemistry of melanins have begun to disclose a number of important structure-property-function relationships of crucial relevance to the biological role of human pigments, including skin (photo) protection and UV-susceptibility. Even slight variations in the monomer composition of black eumelanins and red pheomelanins have been shown to determine significant differences in light absorption, antioxidant, paramagnetic and redox behavior, particle morphology, surface properties, metal chelation and resistance to photo-oxidative wear-and-tear. These variations are primarily governed by the extent of decarboxylation at critical branching points of the eumelanin and pheomelanin pathways, namely the rearrangement of dopachrome to 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA), and the rearrangement of 5-S-cysteinyldopa o-quinoneimine to 1,4-benzothiazine (BTZ) and its 3-carboxylic acid (BTZCA). In eumelanins, the DHICA-to-DHI ratio markedly affects the overall antioxidant and paramagnetic properties of the resulting pigments. In particular, a higher content in DHICA decreases visible light absorption and paramagnetic response relative to DHI-based melanins, but markedly enhances antioxidant properties. In pheomelanins, likewise, BTZCA-related units, prevalently formed in the presence of zinc ions, appear to confer pronounced visible and ultraviolet A (UVA) absorption features, accounting for light-dependent reactive oxygen species (ROS) production, whereas non-carboxylated benzothiazine intermediates seem to be more effective in inducing ROS production by redox cycling mechanisms in the dark. The possible biological and functional significance of carboxyl retention in the eumelanin and pheomelanin pathways is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.