• In multiple sclerosis, previous Gadolinium administrations correlate with dentate nuclei T1 relaxometry. • Such correlation is linked to linear Gadolinium chelates and unrelated to disease duration or severity. • Dentate nuclei T2* relaxometry is age-related and independent of previous Gadolinium administrations. • Changes in dentate nuclei T1 relaxometry are not determined by iron accumulation. • MR relaxometry can quantitatively assess Gadolinium accumulation in dentate nuclei.
The risk of radiation-induced toxicity in patients treated for head and neck (HN) cancer with radiation therapy (RT) is traditionally estimated by condensing the 3D dose distribution into a monodimensional cumulative dose-volume histogram which disregards information on dose localization. We hypothesized that a voxel-based approach would identify correlations between radiation-induced morbidity and local dose release, thus providing a new insight into spatial signature of radiation sensitivity in composite regions like the HN district. This methodology was applied to a cohort of HN cancer patients treated with RT at risk of radiation-induced acute dysphagia (RIAD). We implemented an inter-patient elastic image registration framework that proved robust enough to match even the most elusive HN structures and to provide accurate dose warping. A voxel-based statistical analysis was then performed to test regional dosimetric differences between patients with and without RIAD. We identified a significantly higher dose delivered to RIAD patients in two voxel clusters in correspondence of the cricopharyngeus muscle and cervical esophagus. Our study goes beyond the well-established organ-based philosophy exploring the relationship between radiation-induced morbidity and local dose differences in the HN region. This approach is generally applicable to different HN toxicity endpoints and is not specific to RIAD.
Purpose To apply a voxel-based (VB) approach aimed at exploring local dose differences associated with late radiation-induced lung damage (RILD). Methods and Materials An interinstitutional database of 98 patients who were Hodgkin lymphoma (HL) survivors treated with postchemotherapy supradiaphragmatic radiation therapy was analyzed in the study. Eighteen patients experienced late RILD, classified according to the Radiation Therapy Oncology Group scoring system. Each patient’s computed tomographic (CT) scan was normalized to a single reference case anatomy (common coordinate system, CCS) through a log-diffeomorphic approach. The obtained deformation fields were used to map the dose of each patient into the CCS. The coregistration robustness and the dose mapping accuracy were evaluated by geometric and dose scores. Two different statistical mapping schemes for nonparametric multiple permutation inference on dose maps were applied, and the corresponding P<.05 significance lung subregions were generated. A receiver operating characteristic (ROC)-based test was performed on the mean dose extracted from each subregion. Results The coregistration process resulted in a geometrically robust and accurate dose warping. A significantly higher dose was consistently delivered to RILD patients in voxel clusters near the peripheral medial-basal portion of the lungs. The area under the ROC curves (AUC) from the mean dose of the voxel clusters was higher than the corresponding AUC derived from the total lung mean dose. Conclusions We implemented a framework including a robust registration process and a VB approach accounting for the multiple comparison problem in dose-response modeling, and applied it to a cohort of HL survivors to explore a local dose–RILD relationship in the lungs. Patients with RILD received a significantly greater dose in parenchymal regions where low doses (~6 Gy) were delivered. Interestingly, the relation between differences in the high-dose range and RILD seems to lack a clear spatial signature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.