The present active faults and stress field acting in the southern Apennines (Italy), a structurally complex area characterized by high seismic potential, are studied by analyzing the background microseismicity (M <= 3). We used a microearthquake data set consisting of 1312 events that occurred from August 2005 to April 2011 by integrating the data recorded at 42 seismic stations of various networks. The refined seismicity locations and focal mechanisms delineate a system of northwest-southeast striking normal faults along the Apenninic chain and an approximately east-west oriented strike-slip fault transversely cutting the belt. The seismicity along the chain does not occur on a single fault but in a volume, delimited by the faults activated during the 1980 Irpinia M 6.9 earthquake on subparallel predominantly normal faults. Results show that the recent low magnitude earthquakes belong to the background seismicity, and they are likely generated along the major fault segments activated during the most recent earthquakes, suggesting that they are still active today, 30 years after the main-shock occurrences. The stress inversion from the whole data set suggests that a unique anti-Apenninic extensional regional stress field could explain the two different faulting styles characterizing the earthquakes that occur along the chain and the east-west fault dissecting the belt. On the other hand, the results obtained by separately inverting the Irpinia and the Potenza clusters indicate a more complex model that would predict a change from a normal-faulting regime, acting in the inner sector of the chain, to a strike-slip regime moving eastward and down-depth in the Potenza area
A new dataset of first P-wave arrival times is used to derive the 3D tomographic model of the Campania-Lucania region in the southern Apennines (Italy). We address the issue related to the non-uniqueness of the tomographic inversion solution through massive numerical experimentation based on the global exploration of the model parameter space starting from a large variety of physically plausible initial models. The average of all the realizations is adopted as the best-fit solution and the uncertainty of the model parameters is studied using a statistical approach based on a Monte Carlo-type analysis. How the uncertainty in the initial model, earthquake locations, and data influences the inversion result is studied by considering separately the individual effects. Checkerboard tests are performed to estimate the resolving power of the dataset. Re-located seismicity in a reliable new 3D tomographic model allows us to correlate the earthquake distribution with the main seismogenic structures present in the area.
Abstract-The effects of surface geology on ground motion provide an important tool in seismic hazard studies. It is well known that the presence of soft sediments can cause amplification of the ground motion at the surface, particularly when there is a sharp impedance contrast at shallow depth. The town of Avellino is located in an area characterised by high seismicity in Italy, about 30 km from the epicentre of the 23 November 1980, Irpinia earthquake (M = 6.9). No earthquake recordings are available in the area. The local geology is characterised by strong heterogeneity, with impedance contrasts at depth. We present the results from seismic noise measurements carried out in the urban area of Avellino to evaluate the effects of local geology on the seismic ground motion. We computed the horizontal-to-vertical (H/V) noise spectral ratios at 16 selected sites in this urban area for which drilling data are available within the first 40 m of depth. A Rayleigh wave inversion technique using the peak frequencies of the noise H/V spectral ratios is then presented for estimating Vs models, assuming that the thicknesses of the shallow soil layers are known. The results show a good correspondence between experimental and theoretical peak frequencies, which are interpreted in terms of sediment resonance. For one site, which is characterised by a broad peak in the horizontal-to-vertical spectral-ratio curve, simple one-dimensional modelling is not representative of the resonance effects. Consistent variations in peak amplitudes are seen among the sites. A site classification based on shear-wave velocity characteristics, in terms of Vs30, cannot explain these data. The differences observed are better correlated to the impedance contrast between the sediments and basement. A more detailed investigation of the physical parameters of the subsoil structure, together with earthquake data, are desirable for future research, to confirm these data in terms of site response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.