Progressive myoclonus epilepsy type 1 (EPM1) is a neurodegenerative disease correlating with mutations of the cystatin B gene. Cystatin B is described as a monomeric protein with antiprotease function. This work shows that, in vivo, cystatin B has a polymeric structure, highly resistant to SDS, urea, boiling and sensitive to reducing agents and alkaline pH. Hydrogen peroxide increases the polymeric structure of the protein. Mass spectrometry analysis shows that the only component of the polymers is cystatin B. EPM1 mutants of cystatin B transfected in cultured cells are also polymeric. The banding pattern generated by a cysteine-minus mutant is different from that of the wild-type protein as it contains only monomers, dimers and some very high MW bands while misses components of MW intermediate between 25 and 250 kDa. Overexpression of wild-type or EPM1 mutants of cystatin B in neuroblastoma cells generates cytoplasmic aggregates. The cysteine-minus mutant is less prone to the formation of inclusion bodies. We conclude that cystatin B in vivo has a polymeric structure sensitive to the redox environment and that overexpression of the protein generates aggregates. This work describes a protein with a physiological role characterized by highly stable polymers prone to aggregate formation in vivo.
Malaria is a parasite infection affecting millions of people worldwide. Even though progress has been made in prevention and treatment of the disease; an estimated 214 million cases of malaria occurred in 2015, resulting in 438,000 estimated deaths; most of them occurring in Africa among children under the age of five. This article aims to review the epidemiology, future risk factors and current treatments of malaria, with particular focus on the promising potential of molecular farming that uses metabolic engineering in plants as an effective anti-malarial solution. Malaria represents an example of how a health problem may, on one hand, influence the proper development of a country, due to its burden of the disease. On the other hand, it constitutes an opportunity for lucrative business of diverse stakeholders. In contrast, plant biofarming is proposed here as a sustainable, promising, alternative for the production, not only of natural herbal repellents for malaria prevention but also for the production of sustainable anti-malarial drugs, like artemisinin (AN), used for primary parasite infection treatments. AN, a sesquiterpene lactone, is a natural anti-malarial compound that can be found in Artemisia annua. However, the low concentration of AN in the plant makes this molecule relatively expensive and difficult to produce in order to meet the current worldwide demand of Artemisinin Combination Therapies (ACTs), especially for economically disadvantaged people in developing countries. The biosynthetic pathway of AN, a process that takes place only in glandular secretory trichomes of A. annua, is relatively well elucidated. Significant efforts have been made using plant genetic engineering to increase production of this compound. These include diverse genetic manipulation approaches, such as studies on diverse transcription factors which have been shown to regulate the AN genetic pathway and other biological processes. Results look promising; however, further efforts should be addressed toward optimization of the most cost-effective biofarming approaches for synthesis and production of medicines against the malaria parasite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.