In this paper, the direct one-dimensional beam model introduced by one of the authors is refined to take into account nonsymmetrical beam cross-sections. Two different beam axes are considered, and the strain is described with respect to both. Two inner constraints are assumed: a vanishing shearing strain between the cross-section and one of the two axes, and a linear relationship between the warping and twisting of the cross-section. Considering a grade one mechanical theory and nonlinear hyperelastic constitutive relations, the balance of power, and standard localization and static perturbation procedures lead to field equations suitable to describe the flexural-torsional buckling. Some examples are given to determine the critical load for initially compressed beams and to evaluate their post-buckling behavior.
This paper presents an overview of the origin of multiscale approaches in mechanics. While the pioneer molecular models of linear elastic bodies by Navier, Cauchy and Poisson were contradicted by experiments, the phenomenological energetic approach by Green still seems suitable for simple materials only. Voigt's molecular model, here reinterpreted in the light of contemporary mechanics, reconciled the two approaches providing a conceptual guideline for developing constitutive models based on a direct link between continuum and discrete solid mechanics. Such a theoretical background proves to be especially suitable for new complex materials. An example referred to masonry-like materials is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.