Multipactor analysis of a helical resonant filter has been performed using CST Particle Studio and analytically using a 1-D particle tracking code, based on the Runge-Kutta-Nystrom method. A comparison of results is presented.
The power handling capability of helical resonator filters is studied by means of the parallel plate model (employed in the European Cooperation for Space Standardisation) and more rigorous modelling techniques (like the one available in the commercial software tool SPARK3D™) as well as through an experimental test campaign. The results indicate that the parallel plate model provides conservative power handling capabilities for this class of filters, while rigorous modelling can better capture the impact of the geometrical features on multipactor evolution. Although the accuracy of the estimated power handling depends on the knowledge of the practical secondary emission yield values, the use of such rigorous modelling tools enables the design of helical resonator filters with improved power handling capability by exploiting the large gap approach, therefore opening opportunities to avoid additional dielectric fillings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.