In this article, we present a new approach to expand the range of application of protein-ligand docking methods in the prediction of the interaction of coordination complexes (i.e., metallodrugs, natural and artificial cofactors, etc.) with proteins. To do so, we assume that, from a pure computational point of view, hydrogen bond functions could be an adequate model for the coordination bonds as both share directionality and polarity aspects. In this model, docking of metalloligands can be performed without using any geometrical constraints or energy restraints. The hard work consists in generating the convenient atom types and scoring functions. To test this approach, we applied our model to 39 high-quality X-ray structures with transition and main group metal complexes bound via a unique coordination bond to a protein. This concept was implemented in the protein-ligand docking program GOLD. The results are in very good agreement with the experimental structures: the percentage for which the RMSD of the simulated pose is smaller than the X-ray spectra resolution is 92.3% and the mean value of RMSD is < 1.0 Å . Such results also show the viability of the method to predict metal complexes-proteins interactions when the X-ray structure is not available. This work could be the first step for novel applicability of docking techniques in medicinal and bioinorganic chemistry and appears generalizable enough to be implemented in most protein-ligand docking programs nowadays available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.