Machine-learned regression models represent a promising tool to implement accurate and computationally affordable energy-density functionals to solve quantum many-body problems via density functional theory. However, while they can easily be trained to accurately map ground-state density profiles to the corresponding energies, their functional derivatives often turn out to be too noisy, leading to instabilities in self-consistent iterations and in gradient-based searches of the ground-state density profile. We investigate how these instabilities occur when standard deep neural networks are adopted as regression models, and we show how to avoid it using an ad-hoc convolutional architecture featuring an inter-channel averaging layer. The testbed we consider is a realistic model for noninteracting atoms in optical speckle disorder. With the inter-channel average, accurate and systematically improvable ground-state energies and density profiles are obtained via gradient-descent optimization, without instabilities nor violations of the variational principle.
Adiabatic quantum computers, such as the quantum annealers commercialized by D-Wave Systems Inc., are routinely used to tackle combinatorial optimization problems. In this article, we show how to exploit them to accelerate equilibrium Markov chain Monte Carlo simulations of computationally challenging spin-glass models at low but finite temperatures. This is achieved by training generative neural networks on data produced by a D-Wave quantum annealer, and then using them to generate smart proposals for the Metropolis-Hastings algorithm. In particular, we explore hybrid schemes by combining single spin-flip and neural proposals, as well as D-Wave and classical Monte Carlo training data. The hybrid algorithm outperforms the single spin-flip Metropolis-Hastings algorithm. It is competitive with parallel tempering in terms of correlation times, with the significant benefit of a much shorter equilibration time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.