BackgroundTuberculosis (TB) represents a worldwide cause of mortality (it infects one third of the world’s population) affecting mostly developing countries, including India, and recently also developed ones due to the increased mobility of the world population and the evolution of different new bacterial strains capable to provoke multi-drug resistance phenomena. Currently, antitubercular drugs are unable to eradicate subpopulations of Mycobacterium tuberculosis (MTB) bacilli and therapeutic vaccinations have been postulated to overcome some of the critical issues related to the increase of drug-resistant forms and the difficult clinical and public health management of tuberculosis patients. The Horizon 2020 EC funded project “In Silico Trial for Tuberculosis Vaccine Development” (STriTuVaD) to support the identification of new therapeutic interventions against tuberculosis through novel in silico modelling of human immune responses to disease and vaccines, thereby drastically reduce the cost of clinical trials in this critical sector of public healthcare.ResultsWe present the application of the Universal Immune System Simulator (UISS) computational modeling infrastructure as a disease model for TB. The model is capable to simulate the main features and dynamics of the immune system activities i.e., the artificial immunity induced by RUTI® vaccine, a polyantigenic liposomal therapeutic vaccine made of fragments of Mycobacterium tuberculosis cells (FCMtb). Based on the available data coming from phase II Clinical Trial in subjects with latent tuberculosis infection treated with RUTI® and isoniazid, we generated simulation scenarios through validated data in order to tune UISS accordingly to STriTuVaD objectives. The first case simulates the establishment of MTB latent chronic infection with some typical granuloma formation; the second scenario deals with a reactivation phase during latent chronic infection; the third represents the latent chronic disease infection scenario during RUTI® vaccine administration.ConclusionsThe application of this computational modeling strategy helpfully contributes to simulate those mechanisms involved in the early stages and in the progression of tuberculosis infection and to predict how specific therapeutical strategies will act in this scenario. In view of these results, UISS owns the capacity to open the door for a prompt integration of in silico methods within the pipeline of clinical trials, supporting and guiding the testing of treatments in patients affected by tuberculosis.
As of today, 20 disease-modifying drugs (DMDs) have been approved for the treatment of relapsing multiple sclerosis (MS) and, based on their efficacy, they can be grouped into moderate-efficacy DMDs and high-efficacy DMDs. The choice of the drug mostly relies on the judgment and experience of neurologists and the evaluation of the therapeutic response can only be obtained by monitoring the clinical and magnetic resonance imaging (MRI) status during follow up. In an era where therapies are focused on personalization, this study aims to develop a modeling infrastructure to predict the evolution of relapsing MS and the response to treatments. We built a computational modeling infrastructure named Universal Immune System Simulator (UISS), which can simulate the main features and dynamics of the immune system activities. We extended UISS to simulate all the underlying MS pathogenesis and its interaction with the host immune system. This simulator is a multi-scale, multi-organ, agent-based simulator with an attached module capable of simulating the dynamics of specific biological pathways at the molecular level. We simulated six MS patients with different relapsing–remitting courses. These patients were characterized based on their age, sex, presence of oligoclonal bands, therapy, and MRI lesion load at the onset. The simulator framework is made freely available and can be used following the links provided in the availability section. Even though the model can be further personalized employing immunological parameters and genetic information, we generated a few simulation scenarios for each patient based on the available data. Among these simulations, it was possible to find the scenarios that realistically matched the real clinical and MRI history. Moreover, for two patients, the simulator anticipated the timing of subsequent relapses, which occurred, suggesting that UISS may have the potential to assist MS specialists in predicting the course of the disease and the response to treatment.
The COVID-19 pandemic has highlighted the need to come out with quick interventional solutions that can now be obtained through the application of different bioinformatics software to actively improve the success rate. Technological advances in fields such as computer modeling and simulation are enriching the discovery, development, assessment and monitoring for better prevention, diagnosis, treatment and scientific evidence generation of specific therapeutic strategies. The combined use of both molecular prediction tools and computer simulation in the development or regulatory evaluation of a medical intervention, are making the difference to better predict the efficacy and safety of new vaccines. An integrated bioinformatics pipeline that merges the prediction power of different software that act at different scales for evaluating the elicited response of human immune system against every pathogen is proposed. As a working example, we applied this problem solving protocol to predict the cross-reactivity of pre-existing vaccination interventions against SARS-CoV-2.
Background In 2018, about 10 million people were found infected by tuberculosis, with approximately 1.2 million deaths worldwide. Despite these numbers have been relatively stable in recent years, tuberculosis is still considered one of the top 10 deadliest diseases worldwide. Over the years, Mycobacterium tuberculosis has developed a form of resistance to first-line tuberculosis treatments, specifically to isoniazid, leading to multi-drug-resistant tuberculosis. In this context, the EU and Indian DBT funded project STriTuVaD—In Silico Trial for Tuberculosis Vaccine Development—is supporting the identification of new interventional strategies against tuberculosis thanks to the use of Universal Immune System Simulator (UISS), a computational framework capable of predicting the immunity induced by specific drugs such as therapeutic vaccines and antibiotics. Results Here, we present how UISS accurately simulates tuberculosis dynamics and its interaction within the immune system, and how it predicts the efficacy of the combined action of isoniazid and RUTI vaccine in a specific digital population cohort. Specifically, we simulated two groups of 100 digital patients. The first group was treated with isoniazid only, while the second one was treated with the combination of RUTI vaccine and isoniazid, according to the dosage strategy described in the clinical trial design. UISS-TB shows to be in good agreement with clinical trial results suggesting that RUTI vaccine may favor a partial recover of infected lung tissue. Conclusions In silico trials innovations represent a powerful pipeline for the prediction of the effects of specific therapeutic strategies and related clinical outcomes. Here, we present a further step in UISS framework implementation. Specifically, we found that the simulated mechanism of action of RUTI and INH are in good alignment with the results coming from past clinical phase IIa trials.
As of today, 20 disease modifying drugs (DMD) have been approved for the treatment of relapsing multiple sclerosis (MS) and, based on their efficacy, they can be grouped into moderate-efficacy DMDs and high-efficacy DMDs. The choice of the drug mostly relies on the judgement and experience of neurologists and the evaluation of therapeutic response can only be obtained by monitoring clinical and magnetic resonance imaging (MRI) status during follow up. In an era where therapies are focused on personalization, the aim of this study is to develop a modeling infrastructure to predict the evolution of relapsing MS and the response to treatments. We built a computational modeling infrastructure named UISS (Universal Immune System Simulator) able to simulate the main features and dynamics of the immune system activities. We extended UISS to simulate all the underlying MS pathogenesis and its interaction with the host immune system. This simulator is a multi-scale, multi-organ, agent based simulator with an attached module capable of simulating the dynamics of specific biological pathways at the molecular level. We simulated six MS patients with different relapsing-remitting courses. These patients were characterized on the basis of their age, sex, presence of oligoclonal bands, therapy and MRI lesion load at onset. The simulator framework is made freely available and can be used following the links provided in the availability section. Even though the model can be further personalized employing immunological parameters and genetic information, based on the available data we generated a few simulation scenarios for each patient, including those who matched the real clinical and MRI history. Moreover, for two patients, the simulator anticipated the timing of subsequent relapses, which really occurred, suggesting that UISS may have the potential to assist MS specialists in predicting the course of the disease and the response to treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.