Background The impact of transcranial magnetic stimulation (TMS) on cortical neurons is currently hard to predict based on a priori biophysical and anatomical knowledge alone. This problem can hamper the reliability and reproducibility of protocols aimed at measuring electroencephalographic (EEG) responses to TMS. New Method We introduce and release a novel software tool to facilitate and standardize the acquisition of TMS-evoked potentials (TEPs). The tool, rt-TEP (real-time TEP), interfaces with different EEG amplifiers and offers a series of informative visualization modes to assess in real time the immediate impact of TMS on the underlying neuronal circuits. Results We show that rt-TEP can be used to abolish or minimize magnetic and muscle artifacts contaminating the post-stimulus period thus affording a clear visualization and quantification of the amplitude of the early (<50 ms) EEG response after averaging a limited number of trials. This real-time readout can then be used to adjust TMS parameters (e.g. site, orientation, intensity) and experimental settings (e.g. loudness and/or spectral features of the noise masking) to ultimately maximize direct cortical effects over the undesired sensory effects of the coil's discharge. Comparison with Existing Methods The ensemble of real-time visualization modes of rt-TEP are not implemented in any current commercial software and provide a key readout to titrate TMS parameters beyond the a priori information provided by anatomical models. Conclusions Real-time optimization of stimulation parameters with rt-TEP can facilitate the acquisition of reliable TEPs with a high signal-to-noise ratio and improve the standardization and reproducibility of data collection across laboratories.
The diagnosis of psychogenic nonepileptic seizures (PNES) by means of electroencephalography (EEG) is not a trivial task during clinical practice for neurologists. No clear PNES electrophysiological biomarker has yet been found, and the only tool available for diagnosis is video EEG monitoring with recording of a typical episode and clinical history of the subject. In this paper, a data-driven machine learning (ML) pipeline for classifying EEG segments (i.e., epochs) of PNES and healthy controls (CNT) is introduced. This software pipeline consists of a semiautomatic signal processing technique and a supervised ML classifier to aid clinical discriminative diagnosis of PNES by means of an EEG time series. In our ML pipeline, statistical features like the mean, standard deviation, kurtosis, and skewness are extracted in a power spectral density (PSD) map split up in five conventional EEG rhythms (delta, theta, alpha, beta, and the whole band, i.e., 1–32 Hz). Then, the feature vector is fed into three different supervised ML algorithms, namely, the support vector machine (SVM), linear discriminant analysis (LDA), and Bayesian network (BN), to perform EEG segment classification tasks for CNT vs. PNES. The performance of the pipeline algorithm was evaluated on a dataset of 20 EEG signals (10 PNES and 10 CNT) that was recorded in eyes-closed resting condition at the Regional Epilepsy Centre, Great Metropolitan Hospital of Reggio Calabria, University of Catanzaro, Italy. The experimental results showed that PNES vs. CNT discrimination tasks performed via the ML algorithm and validated with random split (RS) achieved an average accuracy of 0.97 ± 0.013 (RS-SVM), 0.99 ± 0.02 (RS-LDA), and 0.82 ± 0.109 (RS-BN). Meanwhile, with leave-one-out (LOO) validation, an average accuracy of 0.98 ± 0.0233 (LOO-SVM), 0.98 ± 0.124 (LOO-LDA), and 0.81 ± 0.109 (LOO-BN) was achieved. Our findings showed that BN was outperformed by SVM and LDA. The promising results of the proposed software pipeline suggest that it may be a valuable tool to support existing clinical diagnosis.
Until now, clinicians are not able to evaluate the Psychogenic Non-Epileptic Seizures (PNES) from the rest-electroencephalography (EEG) readout. No EEG marker can help differentiate PNES cases from healthy subjects. In this paper, we have investigated the power spectrum density (PSD), in resting-state EEGs, to evaluate the abnormalities in PNES affected brains. Additionally, we have used functional connectivity tools, such as phase lag index (PLI), and graph-derived metrics to better observe the integration of distributed information of regular and synchronized multi-scale communication within and across inter-regional brain areas. We proved the utility of our method after enrolling a cohort study of 20 age- and gender-matched PNES and 19 healthy control (HC) subjects. In this work, three classification models, namely support vector machine (SVM), linear discriminant analysis (LDA), and Multilayer perceptron (MLP), have been employed to model the relationship between the functional connectivity features (rest-HC versus rest-PNES). The best performance for the discrimination of participants was obtained using the MLP classifier, reporting a precision of 85.73%, a recall of 86.57%, an F1-score of 78.98%, and, finally, an accuracy of 91.02%. In conclusion, our results hypothesized two main aspects. The first is an intrinsic organization of functional brain networks that reflects a dysfunctional level of integration across brain regions, which can provide new insights into the pathophysiological mechanisms of PNES. The second is that functional connectivity features and MLP could be a promising method to classify rest-EEG data of PNES form healthy controls subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.