Several non-malignant disorders (NMDs), either inherited or acquired, can be cured by allogeneic hematopoietic stem cell transplantation (HSCT). Between January 2012 and April 2020, 70 consecutive children affected by primary immunodeficiencies, inherited/acquired bone marrow failure syndromes, red blood cell disorders or metabolic diseases, lacking a fully-matched donor or requiring urgent transplantation, underwent TCRαβ/CD19-depleted haploidentical HSCT from an HLA-partially matched relative as part of a prospective study (#NCT01810120). Median age at transplant was 3.5 years (range 0.3-16.1); median time from diagnosis to transplant was 10.5 months (2.7 for SCID patients). Primary engraftment was obtained in 51 patients, while 19 and 2 patients experienced either primary or secondary graft failure (GF), the overall incidence of this complication being 30.4%. Most GFs were observed in children with disease at risk for this complication (e.g., aplastic anemia, thalassemia). All but 5 patients experiencing GF were successfully retransplanted. Six patients died of infectious complications (4 had active/recent infections at time of HSCT), the cumulative incidence of transplant-related mortality (TRM) being 8.5%. Cumulative incidence of grade I-II acute GvHD was 14.4% (no patient developed grade III-IV acute GVHD). Only one patient at risk developed mild chronic GvHD. With a median follow-up of 3.5 years, the 5-year probability of overall and disease-free survival was 91.4% and 86.8%, respectively. In conclusion, TCRαβ/CD19-depleted haploidentical HSCT from an HLA-partially matched relative is confirmed to be an effective treatment for children with NMDs. Prompt donor availability, low incidence of GvHD and TRM make this strategy an attractive option in NMDs patients.
We report on the outcome of 24 patients with Fanconi anemia (FA) lacking an HLA matched related or unrelated donor, given an HLA-haploidentical T-cell receptor αβ (TCRαβ+) and CD19+ cell-depleted hematopoietic stem cell transplantation (HSCT) in the context of a prospective, single-center phase 2 trial. Sustained primary engraftment was achieved in 22 (91.6%) of 24 patients, with median time to neutrophil recovery of 12 days (range, 9-15 days) and platelet recovery of 10 days (range, 7-14 days). Cumulative incidences of grade 1 to 2 acute graft-versus-host disease (GVHD) and chronic GVHD were 17.4% (95% confidence interval [CI], 5.5%-35.5%) and 5.5% (95% CI, 0.8%-33.4%), respectively. The conditioning regimen, which included fludarabine, low-dose cyclophosphamide and, in most patients, single-dose irradiation was well tolerated; no fatal transplant-related toxicity was observed. With a median follow-up of 5.2 years (range, 0.3-8.7 years), the overall and event-free survival probabilities were 100% and 86.3% (95% CI, 62.8%-95.4%), respectively (2 graft failures and 1 case of poor graft function were considered as events). The 2 patients who experienced primary graft failure underwent a subsequent successful HSCT from the other parent. This is the first report of FA patients given TCRαβ+/CD19+-depleted haplo-HSCT in the context of a prospective trial, and the largest series of T-cell–depleted haplo-HSCT in FA reported to date. This trial was registered at www.clinicaltrials.gov as #NCT01810120.
Because T-helper cells are critical for immune responses in retroviral infections, CD4+ T-cell lines specific for the human T-leukemia virus type 1 (HTLV-1) envelope have been generated from peripheral T lymphocytes of nonimmune donors to study their naive repertoire. Recombinant fragments (RE1, amino acids [aa] 26–200; RE3, aa 165–307; RE5, aa 308–401; and RE6, aa 165–401) of HTLV-1 envelope, whole envelope glycoprotein, and synthetic peptides were used to induce T- cell lines. CD4+ T-cell lines specific for one or more fragments were obtained from seven of eight individuals tested. T-cell lines generated against envelope glycoprotein from five of five donors did not cross- react with the RE fragments and vice versa. The lines specific for RE and env were mapped with overlapping peptides. The lines with single peptide (narrow) specificity contained a variety of clones that used different T-cell receptor V beta genes. These data (1) suggest that most of the normal individuals carry T-helper precursors specific for epitopes on HTLV-1 envelope; (2) indicate that heterogeneity of HTLV-1 envelope-specific T cells can be detected in the naive repertoire; and (3) define optimal antigenic preparations to be used to assess cellular immunity in HTLV-1-infected individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.