A spinnable coating capable of releasing metal species to a broth of living organisms in a controlled manner is an extremely interesting material for a number of biotechnological applications. Polymer/metal nanocomposites are a viable choice but very little is known about their biological properties. Here, a polymer based nanocomposite loading stabilized copper nanoparticles is proposed as a biostatic coating and systematic correlations between material properties and biological effects are established. Experimental proof of the nanocomposite capability to release metal species in a controlled manner and eventually to slow or even inhibit the growth of living organisms, such as fungi and other pathogenic microorganisms, are provided. The biostatic activity is correlated to the nanoparticle loading that controls the release of copper species, independently evaluated by means of electro-thermal atomic absorption spectroscopy. Insights into the understanding of the controlled releasing process, involving CuO dissolution through the nanoclusters stabilizing layer, are also proposed.
Arcobacter (A.) butzleri is an emerging pathogenic microorganism, whose taxonomy has been recently suggested to be emended to the Aliarcobacter (Al.) butzleri comb. nov. Despite extensive taxonomic analysis, only few fragmented studies have investigated the occurrence and the prevalence of virulence and antibiotic resistance determinants of this species in strains isolated from shellfish. Herein we report for the first time the whole genome sequencing and genomic characterization of two A. butzleri strains isolated from shellfish, with particular reference to the antibiotic, heavy metals and virulence determinants. This study supported the taxonomic assignment of these strains to the Al. butzleri species, and allowed us to identify antibiotic and metal resistance along with virulence determinants, also additional to those previously reported for the only two A. butzleri strains from different environments genomically characterized. Moreover, both strains showed resistance to β-lactams, vanocomycin, tetracycline and erythromycin and susceptibility to aminoglycosides and ciprofloxacin. Beside enlarging the availability of genomic data to perform comparative studies aimed at correlating phenotypic differences associated with ecological niche and geographic distribution with the genetic diversity of A. butzleri spp., this study reports the endowment of antibiotic and heavy metal resistance and virulence determinants of these shellfish-isolated strains. This leads to hypothesize a relatively high virulence of A. butzleri isolated from shellfish and prompt the need for a wider genomic analysis and for in vitro and in vivo studies of more strains isolated from this and other ecological niches, to unravel the mechanism of pathogenicity of this species, and the potential risk associated to their consumption.
The electrosynthesis of copper and silver core-shell nanoparticles (NPs) by the sacrificial anode technique, employing tetraoctylammonium (TOA) salts as base electrolyte for the first time, is described. These surfactants were selected because they combine high NP stabilizing power with useful disinfecting properties. The resulting colloids were mixed with a solution of an inert dispersing polymer and used to prepare nanostructured composite thin films. The morphologies and chemical compositions of the nanomaterials were characterized by Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The TEM reveals that the average core diameter of the metal NPs ranges between 1.7 and 6.3 nm, as a function of the nature of the metal and of the electrosynthesis conditions, and does not change significantly upon inclusion in the polymer matrix. An appreciable concentration of the metal is detected on the nanoparticle surface by XPS. High-resolution XP spectra indicate that both copper and silver are present at zero oxidation state in all of the materials (colloids and composite films). This demonstrates the high efficiency of the surfactant at controlling the morphology and the chemical composition of the nanodispersed metal in both the as-synthesized colloid and in the polymeric dispersion. The nanocoatings are shown to exert a marked inhibitory effect on the growth of eukaryote and prokaryote target microrganisms, and experimental evidence of a synergic disinfecting effect due to the surfactant and the nanodispersed metal is provided. On the basis of these stability and bioactivity results, it is clear that Cu-NPs and Ag-NPs are suitable for application in disinfecting or antifouling paint and coating formulations.
Eukaryotes, such as fungi, can be harmful pathogen agents, and the control of their bioactivity is critical as humans are eukaryote organisms, too. Here, copper/polymer nanocomposites are proposed as antifungal spinnable coatings with controlled copper-releasing properties. The tests of the bioactivity show that fungal growth is inhibited on the nanocomposite-coated plates, and the antifungal activity can be modulated by controlling the Cu nanoparticle loading. (C) 2004 American Institute of Physics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.