Purpose Paint drying is a very important process in an industry where shorter drying time for productivity and lower energy consumption for production cost are required while maintaining the product’s painting quality. In the present study, a drying process in a line-type paint drying furnace equipped with nozzles for hot air supply and moving conveyer belt to dry painted automotive parts is numerically simulated for the flow and heat transfer inside the furnace to evaluate the quality of the drying or baking at the end of the drying process in a production line. Design/methodology/approach A baking window for a specific paint is used for judging the local degree of baking (DOB) of the painted parts, which can be useful to identify under-baked or over-baked locations of the painted parts, and hence the quality of the baking process. Findings Numerical results of a time history of temperatures at two monitoring points on the painted parts were obtained and compared to the measured data in an actual furnace and showed good agreement. Three types of paints were considered in the present study and numerical results showed different drying characteristics. In addition to the original furnace nozzle configuration, two more furnace nozzle configurations with different numbers, direction and speed of hot air supply were simulated to improve the furnace’s drying performance. As a result, a newly suggested nozzle configuration with quick drying paint can give us a remarkable improvement in surface averaged DOB compared to the original nozzle configuration with original paint. Originality/value The present simulation technique and DOB methodology can be used for the optimal design of a drying furnace.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.