2020): Targeting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase, Journal of Biomolecular Structure and Dynamics, ABSTRACTThe recent pandemic associated with SARS-CoV-2, a virus of the Coronaviridae family, has resulted in an unprecedented number of infected people. The highly contagious nature of this virus makes it imperative for us to identify promising inhibitors from pre-existing antiviral drugs. Two druggable targets, namely 3C-like proteinase (3CLpro) and 2 0 -O-ribose methyltransferase (2 0 -O-MTase) were selected in this study due to their indispensable nature in the viral life cycle. 3CLpro is a cysteine protease responsible for the proteolysis of replicase polyproteins resulting in the formation of various functional proteins, whereas 2 0 -O-MTase methylates the ribose 2 0 -O position of the first and second nucleotide of viral mRNA, which sequesters it from the host immune system. The selected drug target proteins were screened against an in-house library of 123 antiviral drugs. Two promising drug molecules were identified for each protein based on their estimated free energy of binding (DG), the orientation of drug molecules in the active site and the interacting residues. The selected protein-drug complexes were then subjected to MD simulation, which consists of various structural parameters to equivalently reflect their physiological state. From the virtual screening results, two drug molecules were selected for each drug target protein [Paritaprevir (DG ¼ À9.8 kcal/mol) & Raltegravir (DG ¼ À7.8 kcal/mol) for 3CLpro and Dolutegravir (DG ¼ À9.4 kcal/mol) and Bictegravir (DG ¼ À8.4 kcal/mol) for 2 0 -OMTase]. After the extensive computational analysis, we proposed that Raltegravir, Paritaprevir, Bictegravir and Dolutegravir are excellent lead candidates for these crucial proteins and they could become potential therapeutic drugs against SARS-CoV-2.Abbreviations: 3CLpro: 3C-like proteinase; 2 0 -O-MTase: 2 0 -O-ribose methyltransferase; SARS-CoV-2: ARTICLE HISTORY
Background The COVID-19 pandemic caused by SARS-CoV-2 has shown an exponential trend of infected people across the planet. Crediting its virulent nature, it becomes imperative to identify potential therapeutic agents against the deadly virus. The 3-chymotrypsin-like protease (3CLpro) is a cysteine protease which causes the proteolysis of the replicase polyproteins to generate functional proteins, which is a crucial step for viral replication and infection. Computational methods have been applied in recent studies to identify promising inhibitors against 3CLpro to inhibit the viral activity. Main body of the abstract This review provides an overview of promising drug/lead candidates identified so far against 3CLpro through various in silico approaches such as structure-based virtual screening (SBVS), ligand-based virtual screening (LBVS) and drug-repurposing/drug-reprofiling/drug-retasking. Further, the drugs have been classified according to their chemical structures or biological activity into flavonoids, peptides, terpenes, quinolines, nucleoside and nucleotide analogues, protease inhibitors, phenalene and antibiotic derivatives. These are then individually discussed based on the various structural parameters namely estimated free energy of binding (ΔG), key interacting residues, types of intermolecular interactions and structural stability of 3CLpro-ligand complexes obtained from the results of molecular dynamics (MD) simulations. Conclusion The review provides comprehensive information of potential inhibitors identified through several computational methods thus far against 3CLpro from SARS-CoV-2 and provides a better understanding of their interaction patterns and dynamic states of free and ligand-bound 3CLpro structures.
The recent COVID-19 pandemic caused by SARS-CoV-2 has recorded a high number of infected people across the globe. The virulent nature of the virus makes it necessary for us to identify promising therapeutic agents in a time-sensitive manner. The current study utilises an in silico based drug repurposing approach to identify potential anti-viral drug candidates targeting non-structural protein 15 (NSP15), i.e. a uridylate specific endoribonuclease of SARS-CoV-2 which plays an indispensable role in RNA processing and viral immune evasion from the host immune system. The NSP15 protein was screened against an in-house library of 123 antiviral drugs obtained from the DrugBank database from which three promising drug candidates were identified based on their estimated binding affinities (DG), estimated inhibition constants (Ki), the orientation of drug molecules in the active site and the key interacting residues of NSP15. Molecular dynamics (MD) simulations were performed for the screened drug candidates in complex with NSP15 as well as the apo form of NSP15 to mimic their physiological states. Based on the stable MD simulation trajectories, the binding free energies of the screened NSP15-drug complexes were calculated using the MM/PBSA approach. Two candidate drugs, Simeprevir and Paritaprevir, achieved the lowest binding free energies for NSP15, with a value of À259.522 ± 17.579 and À154.051 ± 33.628 kJ/mol, respectively. In addition, their complexes with NSP15 also exhibited the strongest structural stabilities. Taken together, we propose that Simeprevir and Paritaprevir are promising drug candidates to inhibit NSP15 and may act as potential therapeutic agents against SARS-CoV-2.
<div>The recent pandemic associated with 2019-nCoV, a virus of the Coronaviridae family, has resulted in an unprecedented number of infected people. The highly contagious nature of this virus makes it imperative for us to identify potential inhibitors from pre-existing antiviral drugs. Two druggable targets, namely 3C-like proteinase (3CLpro) and 2'-O-ribose methyltransferase (2'-O-MTase) were selected in this study due to their indispensable nature in the viral life cycle. 3CLpro is a cysteine protease responsible for the proteolysis of replicase polyproteins resulting in the formation of various functional proteins, whereas 2'-O-MTase methylates the ribose 2'-O position of the first and second nucleotide of viral mRNA, which sequesters it from the host immune system. The selected drug target proteins were screened against an in-house library of 123 antiviral drugs. Two promising drug molecules were identified for each protein based on their estimated free energy of binding (ΔG), the orientation of drug molecules in the active site and the interacting residues. The selected protein-drug complexes were then subjected to MD simulation, which consists of various structural parameters to equivalently reflect their physiological state. From the virtual screening results, two drug molecules were selected for each drug target protein [Paritaprevir (ΔG= -9.8 kcal/mol) & Raltegravir (ΔG= -7.8 kcal/mol) for 3CLpro and Dolutegravir (ΔG= -9.4 kcal/mol) and Bictegravir (ΔG= -8.4 kcal/mol) for 2'-OMTase]. After the extensive computational analysis, we proposed that Raltegravir, Paritaprevir, Bictegravir and Dolutegravir are excellent lead candidates for these crucial proteins and they could become potential therapeutic drugs against 2019-nCoV.</div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.