Anomalies, which are incompatible with the efficient market hypothesis and mean a deviation from normality, have attracted the attention of both financial investors and researchers. A salient research topic is the existence of anomalies in cryptocurrencies, which have a different financial structure from that of traditional financial markets. This study expands the literature by focusing on artificial neural networks to compare different currencies of the cryptocurrency market, which is hard to predict. It aims to investigate the existence of the day-of-the-week anomaly in cryptocurrencies with feedforward artificial neural networks as an alternative to traditional methods. An artificial neural network is an effective approach that can model the nonlinear and complex behavior of cryptocurrencies. On October 6, 2021, Bitcoin (BTC), Ethereum (ETH), and Cardano (ADA), which are the top three cryptocurrencies in terms of market value, were selected for this study. The data for the analysis, consisting of the daily closing prices for BTC, ETH, and ADA, were obtained from the Coinmarket.com website from January 1, 2018 to May 31, 2022. The effectiveness of the established models was tested with mean squared error, root mean squared error, mean absolute error, and Theil’s U1, and $${R}_{OOS}^{2}$$ R OOS 2 was used for out-of-sample. The Diebold–Mariano test was used to statistically reveal the difference between the out-of-sample prediction accuracies of the models. When the models created with feedforward artificial neural networks are examined, the existence of the day-of-the-week anomaly is established for BTC, but no day-of-the-week anomaly for ETH and ADA was found.
Purpose- Multiple transformations have begun with the shift from industry-oriented to information-oriented structures in the free zones. The study aims to examine the dilemmas and difficulties observed in the transformation of free zones operating in Turkey. Methodology- The study is in quantitative design. The study used the trade volume data according to the countries realized by the free zones in Turkey in 2020. Findings- While the analysis reveals the global trade of free zones, it also reveals results of the ratio of exports to imports of 17 free zones. Conclusion- The results highlight the need for these regions to be integrated into high-tech industrial transformation policies. Keywords: Free zones, transformation, global trade, Turkey, trade volume. JEL Codes: F10, F14, M16
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.