In this study, it was aimed to develop electrically and thermal conductive textiles surfaces. Pretreated polyester fabrics were coated with nano graphene powders at different concentration rates (50, 100, and 200 g/kg) by knife over roll technique. Electrical resistivity, thermal conductivity, thickness and mass per unit area measurements, bending rigidity, and abrasion resistance tests of coated fabrics were performed. Surface resistivity measurements of coated fabrics were made according to ASTM D 257 standard with Keithley 8009 Resistivity Test Fixture. Surface electrical resistivity values of coated fabrics decreased with increasing concentration rates. Of note, 2.53 × 104 Ω/sq surface resistivity value was obtained at 200 g/kg graphene concentration rate. Thermal conductivity measurements of coated fabrics were made according to JIS R 2618 standard with Quick Thermal Conductivity Meter (QTM‐710). Thermal conductivity property of fabrics improved depending on graphene concentration. The highest thermal conductivity value (0.4243 W/mK) was obtained at 200 g/kg graphene concentration rate. One of the most important results of the study was that a maximum weight loss of 0.40% was observed in the abrasion resistance test even after 100 000 cycles. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48024.
In this study, coatings were made with graphene nanopowder in two different thicknesses (0.1 and 0.5 mm) at three different concentrations (50, 100 and 150 g/kg) on polyester woven fabrics. The effects of the coating thickness and graphene concentration were examined with optical and scanning electron microscopy (SEM) images. The thermal stability properties of the samples were also evaluated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Thermal conductivity was evaluated with two different principles: contact and radiant heat transfer, according to JIS R 2618 and EN ISO 6942, respectively. Solar measurements were performed with a Shimadzu UV-3600 Plus spectrophotometer. The graphene coating improved the thermal stability of the polyester fabrics. The solar absorbance value increased by 80% compared to reference fabrics, and reached approximately 90%. One of the important results was that the thermal conductivity coefficient increased by 87% and 262% for the two coating thicknesses, respectively.
In this study, the yellowing behavior of cellulose powders, which is applied to pretreated polyester woven fabrics with concentrations of 100 g/kg by knife coating technique, was investigated. After drying process, coated fabrics were cured at different conditions to determine the effects of the curing temperature and time on yellowing behaviors. The yellowness-whiteness of coated fabrics was measured with a spectrophotometer according to ASTM E313. As the curing temperature and time increase, yellowing effect was more observable. However, the effect of temperature increase is found to be more significant than the increase in curing duration in terms of more observed yellowness. In order to investigate the reason of yellowing, cellulose powder samples were heated in drying oven at three different heating temperatures (130°C, 150°C, and 170°C) for three different heating periods (3, 5, and 7 min). Then, thermal gravimetric analysis and Fourier transform infrared spectroscopy analysis of powder samples were performed for each temperature-period combinations. No ring-opening reaction on the cellulose group was found in the Fourier transform infrared spectroscopy analysis. However, the changes in the spectra can be attributed to the chain breakage in the cellulose macromolecules as well as water loss from the molecular structure during the heating process. Microscopic and scanning electron microscopic analysis was carried out to see any surface change on the fiber and coated fabric. There was no detectable surface change on the fiber and coated fabric surface, apart from a color change on the fabric surface.
In this article, the surface roughness and friction coefficient values of graphene coated fabrics were examined. Fabrics were coated with three different graphene concentrations (5 %, 10 % and 20 %) with the knife-over-roll principle. The surface roughness of samples was measured by Accretech Surfcom 130A. Various surface roughness parameters of the coated fabrics were evaluated. Static and kinetic friction coefficients of coated fabrics were measured by Labthink Param MXD-02 friction tester using the standard wool abrasive cloth. It was observed that the coating concentration affected the frictional and roughness properties of fabrics. Experimental results showed that fabric surface roughness and friction coefficient values decreased significantly, especially at 20 % concentration. It was concluded that the coated fabrics produced could be used in applications such as anti-wear clothing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.