Retinoic acid (RA) signaling is a crucial developmental pathway involved in urothelium development, differentiation and regeneration. Deregulation of the RA signaling is highly implicated in several cancers, including bladder cancer, underlying the need to unravel the complete regulatory aspects of the retinoids in bladder tumorigenesis. Given the fact that RA receptors are transcription factors functioning at the chromatin level and act in close cooperation with chromatin modifiers, it is known that retinoids show their efficacy by changing the epigenome. Bladder cancer can be defined as a “disease of chromatin” with mutations identified in the genes involved in chromatin regulation in 80% of the patients. Therefore, a careful examination of the epigenetic backgrounds and the breakdown of the emerging and highly underexplored field of RA dependent regulation of the epigenome is essential to fully understand the retinoid‐dependent effects on bladder cancer. With this motivation, in this review, we evaluate the role of RA signaling in bladder cancer with a focus on the regulatory and mutational aspects, emphasizing the deregulatory characteristics in bladder cancer and highlighting the potential treatment opportunities with the RA and derivatives alone or in combination with epigenetic drugs.
Emerging evidence has highlighted the importance of targeting EZH2 in bladder cancer owing to the highly mutated nature of bladder cancers harboring mutations in chromatin regulatory genes opposing Polycomb-mediated repression. Besides, enhanced expression of EZH2 contributes to pathogenesis. Furthermore, the critical role of the retinoic acid signaling pathway in the development and homeostasis of the urothelium is well established. Here we report that coordinated targeting of EZH2 and the retinoic acid signaling pathway caused cytotoxic effects on bladder cancer cells by inducing a synergistic reduction in proliferative potential that was associated with increased apoptosis and cell cycle arrest in a cooperative and orchestrated manner. Moreover, combined treatment caused the modulation of the expression of genes associated with an anti-oncogenic profile, as reflected by the stimulation of marker genes associated with apoptosis and differentiation. We further portrayed a molecular mechanism whereby EZH2 maintains H3K27me3-mediated repression of certain genes associated with unfolded protein response and some metabolic processes. This work also characterized an apoptotic program centered on the master transcriptional regulators C/EBPβ and CHOP. These findings highlight the importance of co-targeting the EZH2/retinoic acid pathway in bladder cancers and encourage the design of novel treatments employing retinoids coupled with EZH2 inhibitors in bladder carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.