e By selective enrichment, we isolated a bacterium that can use -phenylalanine as a sole nitrogen source. It was identified by 16S rRNA gene sequencing as a strain of Variovorax paradoxus. Enzyme assays revealed an aminotransferase activity. Partial genome sequencing and screening of a cosmid DNA library resulted in the identification of a 1,302-bp aminotransferase gene, which encodes a 46,416-Da protein. The gene was cloned and overexpressed in Escherichia coli. The recombinant enzyme was purified and showed a specific activity of 17.5 U mg ؊1 for (S)--phenylalanine at 30°C and 33 U mg ؊1 at the optimum temperature of 55°C. The -specific aminotransferase exhibits a broad substrate range, accepting ortho-, meta-, and para-substituted -phenylalanine derivatives as amino donors and 2-oxoglutarate and pyruvate as amino acceptors. The enzyme is highly enantioselective toward (S)--phenylalanine (enantioselectivity [E], >100) and derivatives thereof with different substituents on the phenyl ring, allowing the kinetic resolution of various racemic -amino acids to yield (R)--amino acids with >95% enantiomeric excess (ee). The crystal structures of the holoenzyme and of the enzyme in complex with the inhibitor 2-aminooxyacetate revealed structural similarity to the -phenylalanine aminotransferase from Mesorhizobium sp. strain LUK. The crystal structure was used to rationalize the stereo-and regioselectivity of V. paradoxus aminotransferase and to define a sequence motif with which new aromatic -amino acid-converting aminotransferases may be identified.
Background: -Transaminases are promising biocatalysts for the synthesis of -amino acids. Results: The first three-dimensional structures were obtained of a native -transaminase and complexes with a keto acid and two covalently bound -amino acids. Conclusion: Dual functionality of the carboxylate-and side chain-binding pockets allows binding of -and ␣-amino acids. Significance: These structures may facilitate the development of improved -amino acid biocatalysts.
Deciphering the structural features that functionally separate ammonia lyases from aminomutases is of interest because it may allow for the engineering of more efficient aminomutases for the synthesis of unnatural amino acids (e.g., β-amino acids). However, this has proved to be a major challenge that involves understanding the factors that influence their activity and regioselectivity differences. Herein, we report evidence of a structural determinant that dictates the activity differences between a phenylalanine ammonia lyase (PAL) and aminomutase (PAM). An inner loop region that closes the active sites of both PAM and PAL was mutated within PAM (PAM residues 77-97) in a stepwise approach to study the effects when the equivalent residue(s) found in the PAL loop were introduced into the PAM loop. Almost all of the single loop mutations triggered a lyase phenotype in PAM. Experimental and computational evidence suggest that the induced lyase features result from inner loop mobility enhancements, which are possibly caused by a 310-helix cluster, flanking α-helices, and hydrophobic interactions. These findings pinpoint the inner loop as a structural determinant of the lyase and mutase activities of PAM.
An aminomutase, naturally catalyzing the interconversion of (S)‐α‐phenylalanine and (R)‐β‐phenylalanine, was converted into an ammonia lyase catalyzing the nonoxidative deamination of phenylalanine to cinnamic acid by a rational single‐point mutation. It could be shown by crystal structures and kinetic data that the flexibility of the lid that covers the active site decides whether the enzyme acts as a lyase or a mutase. An Arg92Ser mutation destabilized the closed conformation of the lid structure and converted the mutase into a lyase that exhibited up to 44‐fold increased reaction rates in the enantioselective deamination of (R)‐β‐phenylalanine. In addition, the amination rates of cinnamic acid yielding optically pure (S)‐α‐ and (R)‐β‐phenylalanine were doubled. The applicability of the mutant enzyme for kinetic resolution and asymmetric amination could be shown by biocatalysis on a preparative scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.