Density functional theory (DFT) and atoms in molecules theory (AIM) were used to study the characteristic of the noncovalent interactions in complexes formed between Lewis bases (NH(3), H(2)O, and H(2)S) and Lewis acids (ClF, BrF, IF, BrCl, ICl, and IBr). In order to compare halogen and hydrogen bonds interactions, this study included hydrogen complexes formed by some Lewis bases and HF, HCl, and HBr Lewis acids. Ab initio, wave functions were generated at B3LYP/6-311++G(d,p) level with optimized structures at the same level. Criteria based on a topological analysis of the electron density were used in order to characterize the nature of halogen interactions in Lewis complexes. The main purpose of the present work is to provide an answer to the following questions: (a) why can electronegative atoms such as halogens act as bridges between two other electronegative atoms? Can a study based on the electron charge density answer this question? Considering this, we had performed a profound study of halogen complexes in the framework of the AIM theory. A good correlation between the density at the intermolecular bond critical point and the energy interaction was found. We had also explored the concentration and depletion of the charge density, displayed by the Laplacian topology, in the interaction zone and in the X-Y halogen donor bond. From the atomic properties, it was generally observed that the two halogen atoms gain electron population in response to its own intrinsic nature. Because of this fact, both atoms are energetically stabilized.
In this work we investigate the nature of the Cl···N interactions in complexes formed between substituted ammonium [NHn(X3-n) (with n = 0, 1, 2, 3 and X = -CH3, -F] as Lewis bases and F-Cl molecule as Lewis acid. They have been chosen as a study case due to the wide range of variation of their binding energies, BEs. Møller-Plesset [MP2/6-311++G(2d,2p)] calculations show that the BEs for this set of complexes lie in the range from 1.27 kcal/mol (in F-Cl···NF3) to 27.62 kcal/mol [in F-Cl···N(CH3)3]. The intermolecular distribution of the electronic charge density and their L(r) = -¼∇(2)ρ(r) function have been investigated within the framework of the atoms in molecules (AIM) theory. The intermolecular interaction energy decomposition has also been analyzed using the reduced variational space (RVS) method. The topological analysis of the L(r) function reveals that the local topological properties measured at the (3,+1) critical point [in L(r) topology] are good descriptors of the strength of the halogen bonding interactions. The results obtained from energy decomposition analysis indicate that electrostatic interactions play a key role in these halogen bonding interactions. These results allow us to establish that, when the halogen atom is bonded to a group with high electron-withdrawing capacity, the electrostatic interaction between the electron cloud of the Lewis base and the halogen atom unprotected nucleus of the Lewis acid produces the formation and determines the geometry of the halogen bonded complexes. In addition, a good linear relationship has been established between: the natural logarithm of the BEs and the electrostatic interaction energy between electron charge distribution of N atom and nucleus of Cl atom, denoted as V e-n(N,Cl) within the AIM theory.
The nature of F-BrX-R interactions (with X = F, Cl, Br, I and R = -H, -F) has been investigated through theoretical calculation of molecular potential electrostatic (MEP), molecular polarizability, atoms in molecules (AIM) analysis and energetic decomposition analysis (EDA). A detailed analysis of the MEPs reveals that considering only the static electrostatic interactions is not sufficient to explain the nature of these interactions. The molecular polarizabilities of X-R molecules suggest that the deformation capacity of the electronic cloud of the lone pairs of the X atom plays an important role in the stability of these complexes. The topological analysis of the L(r) = -¼∇(2)ρ(r) function and the detailed analysis of the atomic quadrupole moments reveal that the BrX interactions are electrostatic in nature. The electron acceptor Br atom causes a polarization of the electronic cloud (electronic induction) on the valence shell of the X atom. Finally, the electrostatic forces and charge transfer play an important role not only in the stabilization of the complex, but also in the determination of the molecular geometry of equilibrium. The dispersive and polarization forces do not influence the equilibrium molecular geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.