Graphene oxide (GO), reduced graphene oxide by thermal treatment (rGO-TT), nitrogen-modified rGO (N-rGO), and carbon Vulcan were synthesized and employed in the current work as catalyst support for Pt nanoparticles, to study their properties and impact toward the methanol oxidation reaction (MOR) in sulfuric acid medium. Several physicochemical techniques, such as X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), Transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Raman, and elemental analysis were employed to characterize the novel materials, while potentiodynamic and potentiostatic methods were used to study catalytic performance toward the methanol oxidation reaction in acidic medium. The main results indicate a high influence of the support on the surface electronic state of the catalyst, and consequently the catalytic performance toward the MOR is modified. Accordingly, Pt/N-rGO and Pt/rGO-TT show the lowest and the highest catalytic performance toward the MOR, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.